
Control Engineering Practice 67 (2017) 76–91

Contents lists available at ScienceDirect

Control Engineering Practice

journal homepage: www.elsevier.com/locate/conengprac

Path-following control of small fixed-wing unmanned aircraft systems with

∞ type performance

Devaprakash Muniraj, Mark C. Palframan, Kyle T. Guthrie, Mazen Farhood *
Kevin T. Crofton Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA 24061, United States

a r t i c l e i n f o

Keywords:

Unmanned aircraft system

Fixed-wing aircraft

H-infinity control

Path following

Linear parameter-varying control

a b s t r a c t

The focus of this paper is on the design of path-following controllers for a small fixed-wing unmanned aircraft

system (UAS) using the ∞ robust control framework. The robust controllers are synthesized based on a lumped

path-following and UAS dynamics formulation, effectively combining the six degree-of-freedom aircraft dynamics

with the established parallel transport frame virtual vehicle dynamics. Two path-following controllers with a

conventional cascaded architecture consisting of an outer guidance loop and an inner stabilization loop are also

considered as points of reference. The robustness and performance of these controllers are tested in a rigorous

MATLAB simulation environment that includes steady winds, turbulence, measurement noise, and time delays.
Finally, flight experiments are conducted on a small fixed-wing UAS platform, and the controllers are compared

in terms of tracking performance, control effort, and ease of implementation.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

One of the challenges associated with small fixed-wing unmanned

aircraft systems (UAS) is operating effectively in the presence of rel-

atively significant environmental disturbances, namely winds, gusts,

and turbulence. Owing to their size, small UAS are affected much

more dramatically than traditional aircraft in the presence of what

may be considered small atmospheric disturbances, often leading to

poor performance by traditional trajectory tracking methods with time-

stamped inertial position feedback. Path-following control methods, by

guiding an aircraft to converge to and follow a geometric path in space

specified without time parametrization, can potentially handle stronger

disturbances when compared to trajectory tracking methods (Dačić,

2005). In fact, Aguiar, Hespanha, and Kokotović (2007) shows that

path-following control is often able to remove the inherent performance

limitations present in reference tracking methods.

Path-following control has been shown to have many useful appli-

cations for UAS, primarily involving missions related to surveillance,

imaging, formation flight, and station keeping (Kaminer, Yakimenko,

Dobrokhodov, Pascoal, Hovakimyan, Cao, Young, Patel, 2007; Rysdyk,

2006; Wise & Rysdyk, 2006). Flying various loiter patterns, for instance,

is necessary to collect sparsely distributed airborne containments (Pal-

framan & Woolsey, 2014). UAS operating in urban environments must

maintain their position on the desired path despite the presence of

* Corresponding author.

E-mail addresses: devapm@vt.edu (D. Muniraj), palframan@vt.edu (M.C. Palframan), kguthrie@vt.edu (K.T. Guthrie), farhood@vt.edu (M. Farhood).

significant disturbances in order to avoid collisions with the surrounding

infrastructure.

Some notable approaches to path following include proportional

navigation inspired nonlinear guidance logic (Park, Deyst, & How,

2004), waypoint guidance (Osborne & Rysdyk, 2005), and the use of

vector fields to generate course commands to drive a vehicle towards the

desired path (Nelson, Barber, McLain, & Beard, 2006; Sujit, Saripalli, &

Sousa, 2014). Among others, this work utilizes a virtual vehicle formu-

lation (Kaminer, Pascoal, Xargay, Hovakimyan, Cao, & Dobrokhodov,

2010; Soetanto, Lapierre, & Pascoal, 2003), whereby the controller

strives to minimize the error between the ownship and a fictitious

vehicle constrained to move along the path. Specifically, this work

strives to extend the virtual vehicle formulation in Kaminer et al. (2010)

by incorporating it with the UAS dynamics, resulting in a combined

path-following and UAS dynamics formulation. At the cost of increased

complexity through the introduction of path-following dynamics into

the overall system, a virtual vehicle approach can be considered the

most flexible path-following approach in terms of the geometric paths

that can be followed. In fact, the allowable paths include any curvature-

bounded geometrically defined path. By incorporating key assumptions

into the approach developed in Kaminer et al. (2010), the approach in

this work effectively combines the path-following dynamics and aircraft

dynamics in a way that the resulting system has the same number of

http://dx.doi.org/10.1016/j.conengprac.2017.07.006

Received 24 February 2017; Received in revised form 14 July 2017; Accepted 14 July 2017

Available online 12 August 2017

0967-0661/© 2017 Elsevier Ltd. All rights reserved.

D. Muniraj et al. Control Engineering Practice 67 (2017) 76–91

states as the original aircraft dynamics, thereby minimizing the cost of

using the virtual vehicle framework.

While much of the existing literature on path-following control

methods employs either nonlinear control, such as backstepping, sliding

mode, and adaptive control, e.g., see Kaminer et al. (2010); Yang and

Kim (1999), or proportional–integral–derivative (PID) control, a robust

control approach is used in this work. The performance guarantees

against plant uncertainties and exogenous disturbances provided by

robust controllers make them an appropriate choice for application to

path-following control of small UAS. The combined nonlinear path-

following vehicle dynamics are linearized about an aircraft trim and

parameterized by the path curvature to result in a linear parameter-

varying (LPV) system. Then, two controllers of varying complexity,

namely a linear time-invariant (LTI) controller and an LPV controller,

are designed using the 𝓁2-induced norm as the performance measure.

This linear framework enables us to take advantage of tools from the

vast literature on robust control. For instance, the formulation presented

within is easily adaptable to formal validation techniques and the

incorporation of uncertain initial conditions and other uncertainties

into the synthesis process (Arifianto & Farhood, 2015b; Palframan &

Farhood, 2016). In general, the control strategy developed in this paper

utilizes the fact that control of the vehicle attitude can drive the vehicle

towards a desired position, in this case along a geometric path in space.

The controllers need only a curvature-bounded geometrically defined

path as input to accurately track the path at a constant airspeed in the

midst of atmospheric and other disturbances. As the controllers are not

path dependent, they can be synthesized offline.

In order to compare the proposed method with the existing cascaded

approach for path following, two path-following controllers consisting

of an outer guidance loop and an inner stabilization loop are also

presented herein. The first controller is partially based on the virtual

vehicle formulation proposed by Kaminer et al. (2010), where a nonlin-

ear backstepping outer-loop controller, based on the parallel transport

frame dynamics, prescribes pitch and yaw rate commands, which are

then tracked by an 1 adaptive controller. In this work, however, a

standard ∞ controller is used instead of the 1 adaptive controller

as the stabilizing inner-loop controller. The other cascaded controller

is based on the path-following controller available in the open-source

ArduPilot software (ArduPilot, 2016a). It utilizes a nonlinear guidance

logic based on Park et al. (2004) and has four PID controllers in the

inner loop for stabilization.

All controllers are designed based on a nonlinear model of a Senior

Telemaster UAS (Hobby Express, 2017) developed from flight test data.

Extensive simulation in a rigorous MATLAB environment is performed
to evaluate the path-following performance of each controller. The con-

trollers are then implemented on the Senior Telemaster UAS and flight

experiments are conducted under different environmental conditions to

validate the findings from the simulation studies.

This paper builds upon the work in Palframan, Guthrie, and Farhood

(2015), which in turn is based on the work found in Guthrie (2013). The

work presented in this paper differs from the conference paper Palfra-

man et al. (2015) in the following respects: (i) the airframe considered

in this study is different from the 6-ft Telemaster aircraft considered

in Palframan et al. (2015), and consequently the aerodynamic and

propulsion models as well as the controllers presented in this work are

different; (ii) this paper provides a more detailed explanation of the con-

trol synthesis procedures; (iii) an additional path-following controller

similar to the one used in the commercially available and widely used

autopilot software, ArduPilot, is considered herein; (iv) in this paper,

in addition to simulation studies, the performances of the controllers

are compared through extensive flight tests conducted on a small fixed-

wing UAS platform; and (v) the technical challenges associated with

the real-time implementation of the controllers on the UAS platform

are also addressed. The paper is organized as follows. Sections 2 and

3 cover the background information for fixed-wing UAS and parallel

transport frame path-following dynamics, respectively. Linear plant

model formulation and the controller synthesis procedures for the four

controllers are presented in Section 4. Next, the simulation environment

and performance metrics used are presented in Section 5. Section 6

describes the UAS experimental platform including the onboard sensors,

airframe, and the system architecture. Simulation and flight test results

for various geometric paths are presented, and the relative merits

and limitations of each controller are discussed in Section 7. Finally,

conclusions and possible topics of future work are provided in Section 8.

The notation used is quite standard. The set of real numbers is

denoted by R and that of real 𝑛 × 1 vectors by R
𝑛. 𝑰𝑛 denotes the 𝑛 × 𝑛

identity matrix and 𝟎𝑛×𝑚 denotes an 𝑛 × 𝑚 matrix with zero entries.

If 𝑨1,𝑨2,… ,𝑨𝑁 are matrices, then diag(𝑨1,𝑨2,… ,𝑨𝑁) denotes their
block-diagonal augmentation. Given a symmetric matrix 𝑿, 𝑿 ≺ 𝟎
indicates that 𝑋 is negative definite. The normed space of square

summable vector-valued sequences is denoted by 𝓁2. It consists of
elements 𝒘 = (𝒘0,𝒘1,𝒘2,…), with each 𝒘𝑖 ∈ R

𝑛 for some 𝑛, having a

finite norm ‖𝒘‖𝓁2 defined by ‖𝒘‖2𝓁2 =
∑∞
𝑖=0𝒘𝑖

𝑇𝒘𝑖. Finally, the notation‖𝑮‖𝓁2→𝓁2
denotes the 𝓁2-induced norm of a bounded linear mapping 𝑮

on 𝓁2.

2. UAS flight dynamic model

The UAS dynamic model and controllers in this work are based on a

commercially available Senior Telemaster radio-controlled aircraft from

Hobby Express operated with a customized Pixhawk autopilot system.

2.1. Rigid-body equations of motion

Detailed derivations of the rigid-body equations of motion for a

fixed-wing aircraft are available in Raol and Singh (2009), among

others. Two reference frames are used to define the aircraft’s motion, the

Earth-fixed inertial reference frame and the body-fixed reference frame,

denoted by 𝐼 and 𝑏, respectively. The inertial reference frame has its

origin on the surface of the Earth and has components of (𝒙𝐼 , 𝒚𝐼 , 𝒛𝐼),
which point North, East, and downwards, respectively. The position

vector from the origin of 𝐼 to the nominal aircraft center of gravity (CG)

is defined as 𝒑 = [𝑁, 𝐸, 𝑧𝑔]𝑇 , where 𝑁 is the north component, 𝐸 is the

east component, and −𝑧𝑔 is the altitude above ground level (AGL). The
body frame 𝑏, as shown in Fig. 1, has its origin affixed to the aircraft

CG, and has components of (𝒙𝑏, 𝒚𝑏, 𝒛𝑏), which point towards the aircraft
nose, towards the right wingtip, and downwards, respectively. The wind

reference frame 𝑤 has its origin at the aircraft CG and is obtained by

a left-hand rotation about 𝒚𝑏 by the angle of attack 𝛼, followed by a

right-hand rotation about the resulting 𝒛-axis by the sideslip angle 𝛽, as

shown in Fig. 1.

The gravitational acceleration vector 𝒈 expressed in 𝑏 has compo-

nents 𝑔[− sin 𝜃, cos 𝜃 sin𝜙, cos 𝜃 cos𝜙]𝑇 with 𝑔 = 9.80665m∕s2. The roll,
pitch, and yaw Euler angles are denoted as 𝝀 = [𝜙, 𝜃, 𝜓]𝑇 . The linear
velocity of 𝑏 with respect to 𝐼 expressed in the body frame is denoted

as 𝒗 = [𝑢, 𝑣, 𝑤]𝑇 . Likewise, the angular velocities about (𝒙𝑏, 𝒚𝑏, 𝒛𝑏) are
denoted as 𝝎 = [𝑝, 𝑞, 𝑟]𝑇 . The state vector of the aircraft can then

be defined as 𝒙 = [𝝎𝑇 , 𝒗𝑇 ,𝝀𝑇 ,𝒑𝑇]𝑇 . The linear velocity of the aircraft
relative to the wind is given by 𝒗̄ = 𝒗 − 𝒗𝑤, where 𝒗𝑤 = [𝑢𝑤, 𝑣𝑤, 𝑤𝑤]𝑇
is the wind velocity relative to 𝐼 expressed in 𝑏 and denotes the

exogenous disturbances due to atmospheric turbulence and steady wind.

The airspeed, denoted by 𝑉𝑎, angle of attack 𝛼, and angle of sideslip 𝛽

are defined as

𝑉𝑎 = (𝒗̄𝑇 𝒗̄)
1
2 , 𝛼 = tan−1

𝑤 −𝑤𝑤
𝑢 − 𝑢𝑤

, and 𝛽 = sin−1
𝑣 − 𝑣𝑤
𝑉𝑎

.

Given the symmetry resulting from the choice of the body-fixed

reference frame, the inertia tensor can be simplified by taking 𝐼𝑥𝑦 =
𝐼𝑦𝑥 = 𝐼𝑦𝑧 = 𝐼𝑧𝑦 = 0. Additionally, 𝐼𝑥𝑧 and 𝐼𝑧𝑥 are assumed to

be negligibly small. The remaining inertia terms are determined by

77

D. Muniraj et al. Control Engineering Practice 67 (2017) 76–91

Fig. 1. The body-fixed reference frame, 𝑏, wind reference frame, 𝑤, and parallel transport frame, 𝑝, for an aircraft.

compound pendulum tests resulting in the inertia matrix (with units

kg-m2)

𝑱𝑏 =
⎡⎢⎢⎣
1.32 0 0
0 1.57 0
0 0 1.87

⎤⎥⎥⎦ .
Let 𝜹 = [𝛿𝐸, 𝛿𝐴, 𝛿𝑅, 𝛿𝑇]𝑇 denote the input vector of the aircraft,

where 𝛿𝐸 , 𝛿𝐴, and 𝛿𝑅 are the elevator, aileron, and rudder deflections,

respectively, and 𝛿𝑇 is the throttle input. The net external force and

moment acting on the aircraft expressed in 𝑏 are denoted as 𝒇 (𝒗̄,𝝎, 𝜹)
and 𝒎(𝒗̄,𝝎, 𝜹), respectively. The map 𝑏 ↦ 𝐼 is defined by the rotation

matrix 𝐼𝑏, which is given as

𝐼𝑏(𝝀)

=
⎡⎢⎢⎢⎣
cos 𝜃 cos𝜓 sin𝜙 sin 𝜃 cos𝜓 − cos𝜙 sin𝜓 cos𝜙 sin 𝜃 cos𝜓 + sin𝜙 sin𝜓
cos 𝜃 sin𝜓 sin𝜙 sin 𝜃 sin𝜓 + cos𝜙 cos𝜓 cos𝜙 sin 𝜃 sin𝜓 − sin𝜙 cos𝜓
− sin 𝜃 sin𝜙 cos 𝜃 cos𝜙 cos 𝜃

⎤⎥⎥⎥⎦ .
The differential equations representing the aircraft motion can then be

expressed as

𝒗̇ = 𝑚−1𝒇 (𝒗̄,𝝎, 𝜹) + 𝒈 − 𝝎 × 𝒗, (1a)

𝝎̇ = 𝑱−1
𝑏
𝒎(𝒗̄,𝝎, 𝜹) − 𝑱−1

𝑏
(𝝎 × 𝑱𝑏𝝎), (1b)

𝝀̇ = 𝑬(𝜙, 𝜃)𝝎, (1c)

𝒑̇ = 𝐼𝑏(𝝀)𝒗, (1d)

where

𝑬(𝜙, 𝜃) =
⎡⎢⎢⎣
1 sin𝜙 tan 𝜃 cos𝜙 tan 𝜃
0 cos𝜙 − sin𝜙
0 sin𝜙 cos 𝜃 cos𝜙 cos 𝜃

⎤⎥⎥⎦ (2)

and 𝑚 = 5.71 kg is the aircraft mass. Note that a singularity exists in the
equations of motion when the aircraft is at 𝜃 = ±90◦. Since the aircraft
does not experience such steep attitudes in this work, the singularity

does not pose a problem.

It is found that changes in the initial heading direction (𝜓0) has a

large effect on the linearization of 𝒑̇. To circumvent this, the nominal CG

position is redefined as 𝒑 = [𝑋, 𝑌 , 𝑧𝑔]𝑇 , where 𝑋 = 𝑁 cos𝜓0 + 𝐸 sin𝜓0
and 𝑌 = −𝑁 sin𝜓0 + 𝐸 cos𝜓0. Eq. (1d) is then rewritten as

𝒑̇ = 𝐼𝑏(𝝀0)𝒗, (3)

where 𝝀0 = [𝜙, 𝜃, 𝜓 − 𝜓0]𝑇 .

2.2. Aerodynamic and propulsion models

The aerodynamic and propulsive forces and moments are modeled

separately, and as such, are written as

𝒇 (𝒗̄,𝝎, 𝜹) = 𝒇𝐴(𝒗̄,𝝎, 𝜹) + 𝒇𝑃 (𝒗̄, 𝛿𝑇),
𝒎(𝒗̄,𝝎, 𝜹) = 𝒎𝐴(𝒗̄,𝝎, 𝜹) +𝒎𝑃 (𝒗̄, 𝛿𝑇),

where (⋅)𝐴 and (⋅)𝑃 denote the aerodynamic and propulsive components,
respectively. In this work, the thrust force is generated by an electric

motor driven propeller and is assumed to act along the 𝒙𝑏 axis. Fur-

thermore, propeller effects including reaction torque, P-factor, prop-

wash, and gyroscopic precession are not modeled. These assumptions

allow us to define 𝒎𝑃 (𝒗̄, 𝛿𝑇) = 0 and 𝒇𝑃 (𝒗̄, 𝛿𝑇) = [𝑇 (𝑉𝑎, 𝛿𝑇), 0, 0]𝑇 ,
where 𝑇 (⋅) is the generated propeller thrust. It is convenient to define
𝒇𝐴(⋅) = [𝑓𝑥(⋅), 𝑓𝑦(⋅), 𝑓𝑧(⋅)]𝑇 and 𝒎𝐴(⋅) = [𝑚𝑙(⋅), 𝑚𝑚(⋅), 𝑚𝑛(⋅)]𝑇 .

Assuming that the electronic speed controller provides a constant

propeller RPM for a given input command 𝛿𝑇 , an experimentally ob-

tained lookup table is used to map 𝛿𝑇 to a corresponding RPM value

following a procedure similar to the one explained in Arifianto and

Farhood (2015a). A blade element momentum theory based propeller

analysis tool Javaprop (Hepperle, 2006) is then used to obtain a

lookup table whichmaps propeller RPM and airspeed to propeller thrust.

Finally, the dynamics of the propulsion system are modeled as a second-

order system with the following values for the natural frequency and

damping ratio:

𝜔𝑛 =
{
5.7 rad∕s for 𝛿̇𝑇 ≥ 0
4.5 rad∕s for 𝛿̇𝑇 < 0, 𝜁 =

{
1.3 for 𝛿̇𝑇 ≥ 0
1.6 for 𝛿̇𝑇 < 0,

where the above values are determined experimentally for zero air-

speed.

The aerodynamic forces and moments are defined in terms of

dimensionless aerodynamic coefficients as

𝑓𝑖(𝒗̄,𝝎, 𝜹) = 1
2
𝐶𝑖(𝒗̄,𝝎, 𝜹)𝜌𝑉 2

𝑎
𝑄, for 𝑖 = 𝑥, 𝑦, 𝑧,

𝑚𝑗 (𝒗̄,𝝎, 𝜹) = 1
2
𝐶𝑗 (𝒗̄,𝝎, 𝜹)𝜌𝑉 2

𝑎
𝑄𝑏, for 𝑗 = 𝑙, 𝑛,

𝑚𝑚(𝒗̄,𝝎, 𝜹) = 1
2
𝐶𝑚(𝒗̄,𝝎, 𝜹)𝜌𝑉 2

𝑎
𝑄𝑐,

where 𝐶(⋅) denotes an aerodynamic coefficient, 𝜌 is the air density, 𝑄 =
0.86m2 is the wing area, 𝑏 = 2.39m is the wingspan, and 𝑐 = 0.36m is the

mean aerodynamic chord. The aerodynamic coefficients are estimated

using the output error method with the following model structure:

𝐶𝑥 = 𝐶𝑥0 + 𝐶𝑥𝛼 𝛼 + 𝐶𝑥𝛿𝑇 𝛿𝑇 + 𝐶𝑥𝑇
2𝑇
𝜌𝑆𝑉 2

𝑎

,

𝐶𝑦 = 𝐶𝑦0 + 𝐶𝑦𝛽 𝛽 + 𝐶𝑦𝛿𝐴 𝛿𝐴 + 𝐶𝑦𝛿𝑅 𝛿𝑅 + (𝐶𝑦𝑝𝑝 + 𝐶𝑦𝑟 𝑟)
𝑏

2𝑉𝑎
,

𝐶𝑧 = 𝐶𝑧0 + 𝐶𝑧𝛼 𝛼 + 𝐶𝑧𝛿𝐸 𝛿𝐸 + 𝐶𝑧𝑞
𝑞𝑐

2𝑉𝑎
+ 𝐶𝑧𝑇

2𝑇
𝜌𝑆𝑉 2

𝑎

,

𝐶𝑙 = 𝐶𝑙0 + 𝐶𝑙𝛽 𝛽 + 𝐶𝑙𝛿𝐴 𝛿𝐴 + 𝐶𝑙𝛿𝑅 𝛿𝑅 + (𝐶𝑙𝑝𝑝 + 𝐶𝑙𝑟 𝑟)
𝑏

2𝑉𝑎
,

𝐶𝑚 = 𝐶𝑚0
+ 𝐶𝑚𝛼 𝛼 + 𝐶𝑚𝛿𝐸 𝛿𝐸 + 𝐶𝑚𝑞

𝑞𝑐

2𝑉𝑎
,

𝐶𝑛 = 𝐶𝑛0 + 𝐶𝑛𝛽 𝛽 + 𝐶𝑛𝛿𝐴 𝛿𝐴 + 𝐶𝑛𝛿𝑅 𝛿𝑅 + (𝐶𝑛𝑝𝑝 + 𝐶𝑛𝑟 𝑟)
𝑏

2𝑉𝑎
. (4)

The aerodynamic parameter values are estimated from flight tests,

where automated inputs are applied to each of the control surfaces.

78

D. Muniraj et al. Control Engineering Practice 67 (2017) 76–91

Table 1

Aerodynamic Parameter Values.

Term Value Term Value Term Value Term Value Term Value Term Value

𝐶𝑥0 -0.1303 𝐶𝑦0 0.0165 𝐶𝑧0 -0.5892 𝐶𝑙0 0.0019 𝐶𝑚0
-0.1078 𝐶𝑛0 -0.0015

𝐶𝑥𝛼 -0.0224 𝐶𝑦𝛽 -0.3816 𝐶𝑧𝛼 -3.8864 𝐶𝑙𝛽 -0.0582 𝐶𝑚𝛼 -0.6969 𝐶𝑛𝛽 0.0451

𝐶𝑥𝑇 -0.0195 𝐶𝑦𝛿𝐴
-0.0413 𝐶𝑧𝛿𝐸

0.3061 𝐶𝑙𝛿𝐴
0.1619 𝐶𝑚𝛿𝐸

0.9405 𝐶𝑛𝛿𝐴
-0.0169

𝐶𝑥𝛿𝑇
0.1028 𝐶𝑦𝛿𝑅

-0.1196 𝐶𝑧𝑇 1.4463 𝐶𝑙𝛿𝑅
-0.0128 𝐶𝑚𝑞 -11.8094 𝐶𝑛𝛿𝑅

0.0555

𝐶𝑦𝑝 0.1445 𝐶𝑧𝑞 -1.9859 𝐶𝑙𝑝 -0.4137 𝐶𝑛𝑝 -0.0291

𝐶𝑦𝑟 0.1441 𝐶𝑙𝑟 0.1815 𝐶𝑛𝑟 -0.0781

Fig. 2. The parallel transport frame is related to the current UAS position by the error

vector 𝒑𝑒.

The flight tests are performed in the presence of minimum atmospheric

disturbances as the output error method does not take into account

process noise. For more details on aerodynamic modeling, the reader is

referred to Arifianto and Farhood (2015a), where a similar procedure

is adopted. The aerodynamic parameter values for the UAS platform are

provided in Table 1.

2.3. Servo models

The three servomotors used to deflect the control surfaces are mod-

eled as three identical second-order systems. The natural frequency and

damping ratio of the second-order model are experimentally obtained

from frequency response tests, and the values, 𝜔𝑛 = 13.7 rad∕s and
𝜁 = 0.67, are found to result in a good fit to the collected frequency
response data. The interested reader is referred to Arifianto and Farhood

(2015a) for more details on the experiment. The servo models map the

control surface commands (𝛿𝐸𝑐 , 𝛿𝐴𝑐 , 𝛿𝑅𝑐) to the corresponding control
surface deflections (𝛿𝐸, 𝛿𝐴, 𝛿𝑅).

3. Formulation of the path-following problem

Much of the background, definitions, and formulation of the path-

following problem are borrowed from Kaminer et al. (2010), with some

modifications made for simplification or preference. Let 𝑒(𝓁) represent
the path to be followed in 𝐼 , parameterized by the path length 𝓁. The
path-following dynamics are based on a virtual vehicle moving along the

given path at some prescribed rate. At each point on the path, the virtual

vehicle has an associated reference frame called the parallel transport

frame (sometimes referred to as a rotation minimizing frame) (Bishop,

1975; Hanson & Ma, 1995), denoted 𝑝, affixed to the virtual vehicle

CG. The three orthonormal basis vectors of 𝑝, denoted 𝒕(𝓁) (tangent
vector), 𝒏1(𝓁) (first normal vector), and 𝒏2(𝓁) (second normal vector),
satisfy the following equations:⎡⎢⎢⎣
𝑑𝒕(𝓁)∕𝑑𝓁
𝑑𝒏1(𝓁)∕𝑑𝓁
𝑑𝒏2(𝓁)∕𝑑𝓁

⎤⎥⎥⎦ =
⎡⎢⎢⎣

0 𝑘1(𝓁) 𝑘2(𝓁)
−𝑘1(𝓁) 0 0
−𝑘2(𝓁) 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
𝒕(𝓁)
𝒏1(𝓁)
𝒏2(𝓁)

⎤⎥⎥⎦ , (5)

where 𝑘1(𝓁) and 𝑘2(𝓁) are parameters that vary over 𝓁. Let 𝒑𝑒 =
[𝑥𝑒, 𝑦𝑒, 𝑧𝑒]𝑇 be the position error vector between the UAS and the

virtual vehicle, expressed in 𝑝, as shown in Fig. 2. Also, define 𝑤′

as the rotation of the UAS wind reference frame 𝑤 onto the local

level plane, as shown in Fig. 1. 𝑤′ can be described relative to 𝑝
through a set of Euler angle errors given by 𝝀𝑒 = [𝜙𝑒, 𝜃𝑒, 𝜓𝑒]𝑇 . Using
a small angle approximation, it is assumed that the angular rates in 𝑤′

are approximately equal to 𝝎. After differentiation and simplification,

the following equations are obtained for the kinematic position error

dynamics, 𝒑̇𝑒, of the combined UAS and virtual vehicle system:

𝑥̇𝑒 = −𝓁̇(1 − 𝑘1(𝓁)𝑦𝑒 − 𝑘2(𝓁)𝑧𝑒) + 𝑉𝑎 cos 𝜃𝑒 cos𝜓𝑒,
𝑦̇𝑒 = −𝓁̇𝑘1(𝓁)𝑥𝑒 + 𝑉𝑎 cos 𝜃𝑒 sin𝜓𝑒,
𝑧̇𝑒 = −𝓁̇𝑘2(𝓁)𝑥𝑒 − 𝑉𝑎 sin 𝜃𝑒.

(6)

The attitude error dynamics, 𝝀̇𝑒, can be derived in a similar fashion

resulting in the following equations:

𝜙̇𝑒 = 𝑝 + (𝓁̇𝑘2(𝓁) sin𝜓𝑒 + 𝑟 cos𝜙𝑒 sin 𝜃𝑒 + 𝑞 sin𝜙𝑒 sin 𝜃𝑒)∕ cos 𝜃𝑒,
𝜃̇𝑒 = 𝓁̇𝑘2(𝓁) cos𝜓𝑒 + 𝑞 cos𝜙𝑒 − 𝑟 sin𝜙𝑒, (7)

𝜓̇𝑒 = −𝓁̇𝑘1(𝓁) + (𝓁̇𝑘2(𝓁) sin 𝜃𝑒 sin𝜓𝑒 + 𝑞 sin𝜙𝑒 + 𝑟 cos𝜙𝑒)∕ cos 𝜃𝑒.

Together, (6) and (7) describe the path-following error dynamics of the

combined UAS and virtual vehicle system. Finally, the dynamics of the

virtual vehicle are defined as

𝓁̇ = 𝐾1𝑥𝑒 + 𝑉𝑎 cos 𝜃𝑒 cos𝜓𝑒, (8)

where 𝐾1 is a positive constant, chosen to be 2 in this work.
Following the example set in Kaminer et al. (2010), the error Euler

angles, 𝜃𝑒 and 𝜓𝑒, are shaped using approach angle functions to improve

control performance. In a departure from themethod used in Kaminer et

al. (2010), hyperbolic tangent functions are used as the approach angle

functions for convenience. The approach angles work to ensure that the

vehicle is approaching the path at all times, and provide an extra degree

of freedom in the aggressiveness of the tracking behavior. The approach

angles, 𝜃𝛿 and 𝜓𝛿 , are defined as

𝜃𝛿(𝑧𝑒) = 𝜃𝑚 tanh
(
𝑧𝑒∕𝐶1

)
, 𝜓𝛿(𝑦𝑒) = 𝜓𝑚 tanh

(
−𝑦𝑒∕𝐶2

)
,

where 𝜃𝑚 and 𝜓𝑚 are the maximum desired approach angles, and 𝐶1
and 𝐶2 are scaling factors used to determine the magnitude of the

position error corresponding to the maximum allowed approach angle.

To incorporate these shaping functions, 𝝀𝑒 is redefined as [𝜙𝑒, 𝜃𝑒 −
𝜃𝛿, 𝜓𝑒 − 𝜓𝛿]𝑇 . A sample shaping function for altitude error is shown in
Fig. 3 with 𝐶1 = 8 and 𝜃𝑚 = 20◦. Note that the approach angle is zero
when there is no altitude error, and saturates at ±𝜃𝑚 when the altitude
error is large.

For this work, the set of permissible geometric paths to be followed

is restricted to 2-D paths in the 𝒙𝐼 -𝒚𝐼 plane. For this special case,

many simplifications can be made to the relevant system dynamics.

The largest simplification is that the UAS pitch and bank angles can

be considered identically equal to the previously defined error angles 𝜃𝑒
and 𝜙𝑒. Additionally, the 𝑘2(𝓁) path parameter will be identically zero
for all time, allowing 𝒑̇𝑒 and 𝝀̇𝑒 to be simplified. Given 𝑘2(𝓁) = 0, the
remaining parallel transport frame parameter 𝑘1(𝓁) can be ascribed a
more physical interpretation, namely, the inverse of the current radius

of curvature of the path 𝑅(𝓁) (Hanson & Ma, 1995), that is,

𝑘1(𝓁) =
1

𝑅(𝓁)
. (9)

A straight line path therefore corresponds to an infinite radius of

curvature and a parameter value of 𝑘1 = 0. As the radius of curvature
gets smaller and the corresponding turn gets tighter, the magnitude of

𝑘1 increases.

79

D. Muniraj et al. Control Engineering Practice 67 (2017) 76–91

Fig. 3. A sample approach angle shaping function guides the aircraft to the correct altitude

and saturates at 𝜃𝛿 = 20◦.

Fig. 4. The closed-loop LTI system.

Fig. 5. The open-loop LFR system.

4. Controller synthesis

In this section, four different types of controllers for path following

are presented. Three of the controllers are model-based controllers syn-

thesized based on a linear model of the system 𝐺, shown in Figs. 4 and

5. Three linearized models are developed for the synthesis of the three

model-based controllers. An LPV model with a polynomial dependence

on 𝑘1 is first developed from the UAS and path-following dynamic

equations, and an LPV controller is synthesized. The dependence of

the parameter 𝑘1 on the path location 𝓁 is dropped for simplicity of

notation. An LTI plant model is then formulated by setting 𝑘1 = 0 in
the LPV model. Finally, a second LTI model is developed based on the

standard UAS equations of motion in order to synthesize an inner-loop

∞ controller to track the pitch and yaw rates provided by an outer-

loop backstepping controller. The fourth path-following controller is

composed of a PID controller in the inner loop and a nonlinear guidance

logic in the outer loop, and is based on the controller used in the

commercially available ArduPilot (ArduPilot, 2016a).

4.1. LPV plant model

The lumped path-following and UAS system is composed of Eqs. (1a),

(1b), (6) and (7). The state vector of the lumped system is defined as

𝒙 = [𝒗𝑇 , 𝝎𝑇 , 𝝀𝑇
𝑒
, 𝒑𝑇

𝑒
, 𝒙𝑇

𝑎
]𝑇 , the control input as 𝒖 = [𝛿𝐸𝑐 , 𝛿𝐴𝑐 , 𝛿𝑅𝑐 , 𝛿𝑇]

𝑇 ,

the measurements as 𝒚 = [𝝎𝑇 ,𝝀𝑇
𝑒
, 𝑉𝑎,𝒑

𝑇
𝑒
]𝑇 , and the exogenous dis-

turbances as 𝒘 = [𝒗𝑇
𝑤
,𝒘𝑇

𝑚
]𝑇 , where 𝒘 represents finite energy dis-

turbances in 𝓁2. 𝒘𝑚 represents measurement noise and is defined as

𝒘𝑚 = [𝑚𝑝, 𝑚𝑞, 𝑚𝑟, 𝑚𝜙, 𝑚𝜃, 𝑚𝜓 , 𝑚𝑉𝑎 , 𝑚𝑥, 𝑚𝑦, 𝑚𝑧]
𝑇 , and 𝒙𝑎 consists of the

state variables of the actuators. The vectors 𝒙(𝑡), 𝒖(𝑡), 𝒚(𝑡), and 𝒘(𝑡)
are real with dimensions denoted by 𝑛, 𝑛𝑢, 𝑛𝑦, and 𝑛𝑤, respectively.

The equations of motion, performance, and measurement output can

be written as 𝒙̇ = 𝒇 (𝒙,𝒘, 𝒖, 𝑘1), 𝒛 = 𝒈(𝒙, 𝒘, 𝒖), and 𝒚 = 𝒉(𝒙,𝒘),
respectively.

Parameter-varying trim point

The equations of motion described above depend on 𝑘1 through

the path-following dynamic Eqs. (6) and (7). It is conceivable that

parameterizing the trim states with respect to 𝑘1, thereby making the

trim states dependent on the path curvature, would result in a better

approximation of the UAS nonlinear equations of motion as compared

to linearizing the equations about straight and level flight. Assuming

constant altitude flight, the trim bank angle 𝜙𝑒𝑡𝑟 required to maintain

a steady level turn of radius 𝑅 and a tangential velocity 𝑉𝑡 can be

determined by relating the aircraft’s lift and centripetal acceleration as

tan𝜙𝑒𝑡𝑟 =
𝑉 2
𝑡

𝑔𝑅
.

It is noted that 𝒗𝑤 = 𝟎 for the chosen trim point, therefore, 𝑉𝑡 is

equivalent to 𝑉𝑎𝑡𝑟 , the desired airspeed of the UAS. Given the choice

of bounded path curvatures, Eq. (9) and the small angle assumption are

employed to solve for the trim bank angle as a function of 𝑘1, namely

𝜙𝑒𝑡𝑟
(𝑘1) =

𝑘1𝑉
2
𝑎𝑡𝑟

𝑔
. (10)

For a given 𝑘1, the trim states and control inputs are determined by

solving the following set of equations: 𝒗̇ = 0, 𝝎̇ = 0, 𝜙̇𝑒 = 0, 𝜃̇𝑒 = 0,
𝑧̇𝑒 = 0, 𝜙𝑒 − 𝜙𝑒𝑡𝑟 = 0 and 𝑉𝑎 − 𝑉𝑎𝑡𝑟 = 0, where 𝑉𝑎𝑡𝑟 = 15 m∕s is the
desired airspeed and 𝜙𝑒𝑡𝑟 is determined using (10). The equations are

solved using the MATLAB function fsolve over the range −0.0141 ≤

𝑘1 ≤ 0.0141. The computed trim states, measurements, and control

inputs are given in Table 2 for straight and level flight (𝑘1 = 0), a
moderate turn (𝑘1 = ±0.009), and an aggressive turn (𝑘1 = ±0.0141).
The moderate turn with 𝑘1 = 0.009 corresponds to a bank angle of
approximately 12.0◦ for the chosen airspeed and a turn radius of 110.5
meters. The aggressive turn with 𝑘1 = 0.0141 corresponds to a bank
angle of approximately 18.5◦ and a turn radius of 70.9 meters. A more
aggressive turn radius could not be used with the Senior Telemaster

platform due to a limitation on the maximum achievable thrust, and

hence 𝑘1 is restricted to the interval [−0.0141, 0.0141].
In order to express the LPV model as a linear fractional represen-

tation (LFR), the state–space equations should generally have rational

dependence on the parameter 𝑘1. The type of parameter dependence, be

it linear, polynomial or rational, can affect the size of the resulting LFR

and hence the computational complexity of the problem. With this in

mind, the variation of the trim states and control inputs with respect to

𝑘1, shown in Figs. 6a and 6b, are approximated by linear and quadratic

functions over the range −0.0141 ≤ 𝑘1 ≤ 0.0141. The associated linear

80

D. Muniraj et al. Control Engineering Practice 67 (2017) 76–91

(a) Trim states. (b) Trim control inputs.

Fig. 6. Parameter-varying trim states and control inputs for the UAS platform. The units of {𝑢𝑡𝑟, 𝑣𝑡𝑟, 𝑤𝑡𝑟}, {𝑝𝑡𝑟, 𝑞𝑡𝑟, 𝑟𝑡𝑟}, {𝜙𝑒𝑡𝑟 , 𝜃𝑒𝑡𝑟 }, and the PWM control input signals {𝛿𝐸𝑡𝑟 , 𝛿𝐴𝑡𝑟 , 𝛿𝑅𝑡𝑟 , 𝛿𝑇𝑡𝑟 } are
meters per second, radians per second, radians, and microseconds, respectively.

Table 2

LPV Trim Points.

𝑘1 −0.0141 −0.009 0 0.009 0.0141

𝑝 −0.001 −0.001 0.000 −0.002 −0.005
𝑞 0.070 0.028 0.000 0.028 0.070

𝑟 −0.209 −0.135 −0.001 0.135 0.209

𝑢 14.984 14.985 14.984 14.984 14.984

𝑣 0.670 0.673 0.678 0.683 0.684

𝑤 0.123 0.047 −0.003 0.046 0.122

𝑉𝑎 15.000 15.000 15.000 15.000 15.000

𝜙𝑒 −0.324 −0.207 0.000 0.207 0.324

𝜃𝑒 −0.007 −0.006 0.000 0.012 0.022

𝛿𝐸 0.131 0.121 0.115 0.121 0.131

𝛿𝐴 0.020 0.015 0.004 −0.008 −0.014
𝛿𝑅 −0.026 −0.019 −0.008 0.004 0.010

𝛿𝑇 0.478 0.474 0.472 0.474 0.477

Note: The units used for the angles, position, angular rates, velocities, and the PWM

control input signals are radians, meters, radians per second, meters per second, and

microseconds, respectively.

and quadratic functions for the trim states are given by

𝑞𝑡𝑟(𝑘1) = 351.6886𝑘21 + 0.0007𝑘1 − 0.0001,
𝑟𝑡𝑟(𝑘1) = 14.910𝑘1 − 0.0007,
𝜙𝑒𝑡𝑟

(𝑘1) = 22.9350𝑘1, (11)

𝜃𝑒𝑡𝑟
(𝑘1) = 40.6673𝑘21 + 1.0254𝑘1 − 0.0002,

𝑤𝑡𝑟(𝑘1) = 625.5609𝑘21 − 0.0123𝑘1 − 0.0035.

The trim states 𝑞𝑡𝑟(𝑘1), 𝜃𝑒𝑡𝑟 (𝑘1), and 𝑤𝑡𝑟(𝑘1) are approximated by

quadratic functions, while 𝑟𝑡𝑟(𝑘1) and 𝜙𝑒𝑡𝑟 (𝑘1) are approximated as linear
functions of 𝑘1. As expected, the bank angle 𝜙𝑒𝑡𝑟 (𝑘1) and yaw rate 𝑟𝑡𝑟(𝑘1)
have the largest variation with 𝑘1. The trim states 𝑢𝑡𝑟(𝑘1), 𝑣𝑡𝑟(𝑘1), and
𝑝𝑡𝑟(𝑘1) are not strongly dependent on 𝑘1 and are approximated by the
values corresponding to straight and level flight. The errors due to the

polynomial approximations are very small, with the RMS errors for

the linear velocities, angular velocities, and attitude angles being less

than 0.02 m/s, 1.6 × 10−3 rad/s, and 4.2 × 10−5 rad, respectively. The
polynomial approximations for the control inputs are given by

𝛿𝐸𝑡𝑟
(𝑘1) = 83.8585𝑘21 − 0.0001𝑘1 + 0.1145,

𝛿𝐴𝑡𝑟
(𝑘1) = −1.2315𝑘1 + 0.0035, (12)

𝛿𝑅𝑡𝑟
(𝑘1) = 1.2662𝑘1 − 0.0079.

The lateral-directional control inputs 𝛿𝐴𝑡𝑟 (𝑘1) and 𝛿𝑅𝑡𝑟 (𝑘1) are approx-
imated by linear functions, while the elevator control input 𝛿𝐸𝑡𝑟 (𝑘1) is
approximated by a quadratic function. The throttle control input 𝛿𝑇𝑡𝑟 (𝑘1)

is not strongly dependent on 𝑘1 and is thus fixed at the trim value. The

RMS values of the approximation errors for the control inputs are all

less than 0.0027 𝜇s.

Linearization and discretization

Linearizing the functions 𝒇 (⋅), 𝒈(⋅), and 𝒉(⋅) about the parameter-
varying trim points 𝒙𝑡𝑟(𝑘1), 𝒖𝑡𝑟(𝑘1), and 𝒘𝑡𝑟 = 𝟎 yields the continuous-
time LPV state–space system

⎡⎢⎢⎣
̇̄𝒙(𝑡)
𝒛̄(𝑡)
𝒚̄(𝑡)

⎤⎥⎥⎦ =
⎡⎢⎢⎣
𝑨𝑐 (𝑘1) 𝑩𝑐𝑤1 (𝑘1) 𝑩𝑐2(𝑘1)
𝑪𝑐1 (𝑘1) 𝑫𝑐𝑤

11 (𝑘1) 𝑫𝑐
12(𝑘1)

𝑪𝑐2 (𝑘1) 𝑫𝑐𝑤
21 (𝑘1) 𝟎

⎤⎥⎥⎦
⎡⎢⎢⎣
𝒙̄(𝑡)
𝒘(𝑡)
𝒖̄(𝑡)

⎤⎥⎥⎦ , (13)

where 𝑡 is continuous time, 𝒙̄ = 𝒙 − 𝒙𝑡𝑟, 𝒖̄ = 𝒖 − 𝒖𝑡𝑟, 𝒚̄ = 𝒚 − 𝒚𝑡𝑟, and

𝒙̄(0) = 𝟎. The system matrices are calculated symbolically and are given

by

𝑨𝑐 (𝑘1) =
𝜕𝒇

𝜕𝒙

||||(𝒙𝑡𝑟 ,𝒘𝑡𝑟 ,𝒖𝑡𝑟), 𝑩𝑐𝑤1 (𝑘1) =
𝜕𝒇

𝜕𝒘

||||(𝒙𝑡𝑟 ,𝒘𝑡𝑟 ,𝒖𝑡𝑟),
𝑩𝑐2(𝑘1) =

𝜕𝒇

𝜕𝒖

||||(𝒙𝑡𝑟 ,𝒘𝑡𝑟 ,𝒖𝑡𝑟), 𝑪𝑐1 (𝑘1) =
𝜕𝒈

𝜕𝒙

||||(𝒙𝑡𝑟 ,𝒘𝑡𝑟 ,𝒖𝑡𝑟),
𝑫𝑐𝑤

11 (𝑘1) =
𝜕𝒈

𝜕𝒘

||||(𝒙𝑡𝑟 ,𝒘𝑡𝑟 ,𝒖𝑡𝑟), 𝑫𝑐
12(𝑘1) =

𝜕𝒈

𝜕𝒖

||||(𝒙𝑡𝑟 ,𝒘𝑡𝑟 ,𝒖𝑡𝑟),
𝑪𝑐2 (𝑘1) =

𝜕𝒉

𝜕𝒙

||||(𝒙𝑡𝑟 ,𝒘𝑡𝑟 ,𝒖𝑡𝑟), 𝑫𝑐𝑤
21 (𝑘1) =

𝜕𝒉

𝜕𝒘

||||(𝒙𝑡𝑟 ,𝒘𝑡𝑟 ,𝒖𝑡𝑟),
where 𝒙𝑡𝑟 and 𝒖𝑡𝑟 are dependent on the parameter 𝑘1. Note that 𝒑𝑒 = 𝒑̄𝑒.

As the thrust model is based on lookup tables, it is linearized prior to the

symbolic Jacobian calculations using the small-perturbation method,

yielding the linear model 𝑇 = 𝑇𝛿𝑇
𝛿𝑇 + 𝑇𝑉𝑎𝑉𝑎, where 𝑇𝛿𝑇 and 𝑇𝑉𝑎 are

constants.

The matrices in (13) have nonlinear dependence on the parameter

𝑘1 due to the existence of trigonometric functions within the equations

of motion (1), (6), and (7). Since 𝜙𝑒𝑡𝑟 (𝑘1) is bounded as a result of 𝑘1
being bounded, the zero-centered trigonometric functions of 𝜙𝑒𝑡𝑟 (𝑘1) are
approximated by the low-order Taylor series representations

sin𝜙𝑒𝑡𝑟 (𝑘1) ≈ 𝜙𝑒𝑡𝑟 (𝑘1) and cos𝜙𝑒𝑡𝑟 (𝑘1) ≈ 1 − 1
2
𝜙𝑒𝑡𝑟

(𝑘1)2. (14)

Similar functions are defined for 𝜃𝑒𝑡𝑟 (𝑘1). Substituting these functions
into the matrices in (13) ensures that the continuous-time LPV system

is polynomially dependent on 𝑘1.

In order to achieve robust performance in the midst of disturbances,

a weighting matrix based on the expected worst-case atmospheric

disturbances and three times the sensor noise standard deviations is

defined as𝑾𝑤 = diag(3𝑰3, 0.026𝑰3, 0.03𝑰3, 6, 6𝑰3). The disturbance input

81

D. Muniraj et al. Control Engineering Practice 67 (2017) 76–91

matrices are then redefined as

𝑩𝑐1(𝑘1) =𝑾𝑤𝑩
𝑐𝑤
1 (𝑘1), 𝑫𝑐

11(𝑘1) = 𝑾𝑤𝑫
𝑐𝑤
11 (𝑘1), and

𝑫𝑐
21(𝑘1) = 𝑾𝑤𝑫

𝑐𝑤
21 (𝑘1).

To enable real-time implementation of the path-following controllers

on the small UAS platform, discrete-time controllers are designed with

a sampling time of 0.04 s. Therefore, the continuous-time LPV model is

discretized using the Euler method with a sampling time of 𝜏 = 0.04 as

𝑨(𝑘1) = (𝑰 + 𝜏𝑨𝑐 (𝑘1)), 𝑩𝑖(𝑘1) = 𝜏𝑩𝑐𝑖 (𝑘1), 𝑪𝑖(𝑘1) = 𝑪𝑐
𝑖
(𝑘1),

𝑫𝑖1(𝑘1) = 𝑫𝑐
𝑖1(𝑘1), 𝑫12(𝑘1) = 𝑫𝑐

12(𝑘1),

for 𝑖 = 1, 2. Euler discretization is used to maintain minimum order

parameter dependence on 𝑘1. The discrete-time LPV system can then be

expressed as

⎡⎢⎢⎣
𝒙̄𝑘+1
𝒛̄𝑘
𝒚̄𝑘

⎤⎥⎥⎦ =
⎡⎢⎢⎣
𝑨(𝑘1) 𝑩1(𝑘1) 𝑩2(𝑘1)
𝑪1(𝑘1) 𝑫11(𝑘1) 𝑫12(𝑘1)
𝑪2(𝑘1) 𝑫21(𝑘1) 𝟎

⎤⎥⎥⎦
⎡⎢⎢⎣
𝒙̄𝑘
𝒘𝑘
𝒖̄𝑘

⎤⎥⎥⎦ , (15)

where 𝒙̄𝑘 = 𝒙̄(𝑘𝜏), 𝒖̄𝑘 = 𝒖̄(𝑘𝜏), 𝒚̄𝑘 = 𝒚̄(𝑘𝜏), 𝒛̄𝑘 = 𝒛̄(𝑘𝜏), 𝒘𝑘 = 𝒘(𝑘𝜏),
and 𝒙̄0 = 𝟎.The scheduling parameter 𝑘1 takes values in the interval
[−0.0141, 0.0141]. However, the LPV synthesis result used in this paper
requires that the scheduling parameter take values in the interval

[−1, 1]. To facilitate the application of the synthesis result, a new scaled

parameter 𝑘̄1 = 𝑘1∕0.0141 is used. Then, replacing the parameter 𝑘1
in the system equation (15) with 0.0141𝑘̄1 leads to an LPV model with
a scheduling parameter 𝑘̄1 such that |𝑘̄1| ≤ 1. Since the reformulated
system (15) has polynomial dependence on the parameter 𝑘̄1, it can be

equivalently represented by the LFR shown in Fig. 5, and defined as⎡⎢⎢⎢⎢⎣
𝒙̄𝑘+1
𝝋𝑘
𝒛̄𝑘
𝒚̄𝑘

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
𝑨𝑠𝑠 𝑨𝑠𝑝 𝑩1𝑠 𝑩2𝑠
𝑨𝑝𝑠 𝑨𝑝𝑝 𝑩1𝑝 𝑩2𝑝
𝑪1𝑠 𝑪1𝑝 𝑫11 𝑫12
𝑪2𝑠 𝑪2𝑝 𝑫21 𝟎

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝒙̄𝑘
𝝑𝑘
𝒘𝑘
𝒖̄𝑘

⎤⎥⎥⎥⎥⎦
, (16)

where 𝝑𝑘 = 𝑘̄1𝝋𝑘, 𝒙̄0 = 𝟎, 𝝋𝑘 ∈ R
𝑛𝛿 , and 𝝑𝑘 ∈ R

𝑛𝛿 . It is noted that the

number of system states, 𝑛, is 18.

4.2. LPV ∞ Controller

A discrete-time LPV controller with a sampling time of 0.04 s is

synthesized for the LPVmodel (16). A parameter-independent Lyapunov

approach is adopted to design the LPV controller based on Farhood

(2012) and Packard (1994). The controller is designed to attenuate the

effect of the exogenous disturbances 𝒘 on the performance output 𝒛̄ by

minimizing the 𝓁2-induced norm of the input–output mapping 𝒘 ↦ 𝒛̄

for all permissible values of the scheduling parameter 𝑘̄1. In other words,

a controller is sought which minimizes the 𝓁2-gain performance level 𝛾
such that

‖𝒘↦ 𝒛̄‖𝓁2→𝓁2
= sup‖𝒘‖𝓁2≠0

‖𝒛̄‖𝓁2‖𝒘‖𝓁2 < 𝛾 (17)

for all permissible values of 𝑘̄1 ∈ [−1, 1]. The procedure used for

constructing the controller goes as follows. First, the following semi-

definite program (SDP) is solved for 𝑹𝑠, 𝑹𝑝, 𝑺𝑠, 𝑺𝑝, and 𝛾:

minimize ∶ 𝛾2

subject to ∶ 𝑭 𝑇
𝑠
𝑹𝑠𝑭𝑠 + 𝑭 𝑇𝑝 𝑹𝑝𝑭𝑝 − 𝑽

𝑇
1𝑠𝑹𝑠𝑽1𝑠 − 𝑽

𝑇
1𝑝𝑹𝑝𝑽1𝑝

+𝑴𝑇𝑴 − 𝛾2𝑽 𝑇2 𝑽2 ≺ 𝟎,[
𝑾 𝑇
𝑠
𝑺𝑠𝑾𝑠 +𝑾 𝑇

𝑝
𝑺𝑝𝑾𝑝 − 𝑼𝑇1𝑠𝑺𝑠𝑼1𝑠 − 𝑼𝑇1𝑝𝑺𝑝𝑼1𝑝 − 𝑼𝑇2 𝑼2 𝑳𝑇

𝑳 −𝛾2𝑰

]
≺ 𝟎,[

𝑹𝑠 𝑰

𝑰 𝑺𝑠

]
≻ 𝟎,

[
𝑹𝑝 𝑰

𝑰 𝑺𝑝

]
≻ 𝟎,

where

Im
[
𝑽 𝑇1𝑠 𝑽 𝑇1𝑝 𝑽 𝑇2

]𝑇
= Ker

[
𝑩𝑇2𝑠 𝑩𝑇2𝑝 𝑫𝑇

12

]
,[

𝑽 𝑇1𝑠 𝑽 𝑇1𝑝 𝑽 𝑇2

] [
𝑽 𝑇1𝑠 𝑽 𝑇1𝑝 𝑽 𝑇2

]𝑇
= 𝑰 ,

Im
[
𝑼𝑇1𝑠 𝑼𝑇1𝑝 𝑼𝑇2

]𝑇
= Ker

[
𝑪2𝑠 𝑪2𝑝 𝑫21

]
,[

𝑼𝑇1𝑠 𝑼𝑇1𝑝 𝑼𝑇2

] [
𝑼𝑇1𝑠 𝑼𝑇1𝑝 𝑼𝑇2

]𝑇
= 𝑰 ,

𝑭𝑠 = 𝑨𝑇
𝑠𝑠
𝑽1𝑠 +𝑨𝑇𝑝𝑠𝑽1𝑝 + 𝑪

𝑇
1𝑠𝑽2, 𝑭𝑝 = 𝑨𝑇

𝑠𝑝
𝑽1𝑠 +𝑨𝑇𝑝𝑝𝑽1𝑝 + 𝑪

𝑇
1𝑝𝑽2,

𝑾𝑠 = 𝑨𝑠𝑠𝑼1𝑠 +𝑨𝑠𝑝𝑼1𝑝 + 𝑩1𝑠𝑼2, 𝑾𝑝 = 𝑨𝑝𝑠𝑼1𝑠 +𝑨𝑝𝑝𝑼1𝑝 + 𝑩1𝑝𝑼2,

𝑴 = 𝑩𝑇1𝑠𝑽1𝑠 + 𝑩
𝑇
1𝑝𝑽1𝑝 +𝑫

𝑇
11𝑽2,

𝑳 = 𝑪1𝑠𝑼1𝑠 + 𝑪1𝑝𝑼1𝑝 +𝑫11𝑼2,

with Im and Ker denoting the image and kernel, respectively. Define,
for convenience, 𝑛̄ = 𝑛 + 𝑛𝛿 ,

𝑬𝑠 = (𝑹𝑠 − 𝑺−1
𝑠

)1∕2, 𝑬𝑝 = (𝑹𝑝 − 𝑺−1
𝑝

)1∕2, 𝑬 = diag(𝑬𝑠,𝑬𝑝),
𝑹 = diag(𝑹𝑠,𝑹𝑝),

𝑺 = diag(𝑺𝑠,𝑺𝑝), 𝑩𝑖 =
[
𝑩𝑇
𝑖𝑠

𝑩𝑇
𝑖𝑝

]𝑇
and 𝑪𝑖 =

[
𝑪𝑖𝑠 𝑪𝑖𝑝

]
for 𝑖 = 1, 2.

Next, solve the following SDP for 𝐽 :

𝑯 + 𝑷 𝑇 𝑱𝑸 +𝑸𝑇 𝑱 𝑇𝑷 ≺ 𝟎,

where

𝑯 =
⎡⎢⎢⎣
−𝒀  


𝑇 −𝑿 


𝑇


𝑇



⎤⎥⎥⎦ , 𝑷 =
[
𝟎 𝑰 𝟎𝑛̄×(2𝑛̄+𝑛𝑤) 𝟎
𝑩𝑇2 𝟎 𝟎 𝑫𝑇

12∕𝛾

]
,

𝑸 =
[
𝟎𝑛̄×2𝑛̄ 𝟎 𝑰 𝟎 𝟎𝑛̄×𝑛𝑧
𝟎 𝑪2 𝟎 𝑫21 𝟎

]
,

𝒀 =
[
𝑹 𝑬

𝑬𝑇 𝑰

]
, 𝑿 =

[
𝑺 −𝑺𝑬

−𝑬𝑇𝑺𝑇 𝑰 + 𝑬𝑇𝑺𝑬

]
,  =

⎡⎢⎢⎣
𝑨𝑠𝑠 𝑨𝑠𝑝 𝟎
𝑨𝑝𝑠 𝑨𝑝𝑝 𝟎
𝟎 𝟎 𝟎𝑛̄×𝑛̄

⎤⎥⎥⎦ ,
 =
[
𝑩1 𝟎
𝟎 𝟎𝑛̄×𝑛𝑧

]
,  =

[
𝟎 𝑪𝑇1 ∕𝛾
𝟎 𝟎𝑛̄×𝑛𝑧

]
, and  =

[
−𝑰 𝑫𝑇

11∕𝛾
𝑫11∕𝛾 −𝑰

]
.

Finally, the controller can be constructed from 𝑱 as an LFR with the

state–space realization⎡⎢⎢⎢⎣
𝒙𝐾
𝑘+1
𝝋𝐾
𝑘

𝒖̄𝑘

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
𝑨𝐾
𝑠𝑠

𝑨𝐾
𝑠𝑝

𝑩𝐾
𝑠

𝑨𝐾
𝑝𝑠

𝑨𝐾
𝑝𝑝

𝑩𝐾
𝑝

𝑪𝐾
𝑠

𝑪𝐾
𝑝

𝑫𝐾

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝒙𝐾
𝑘

𝝑𝐾
𝑘

𝒚̄𝑘

⎤⎥⎥⎥⎦ , 𝝑𝐾
𝑘
= 𝑘̄1𝝋𝐾𝑘 ,

where 𝑱 =
⎡⎢⎢⎢⎣
𝑨𝐾
𝑠𝑠

𝑨𝐾
𝑠𝑝

𝑩𝐾
𝑠

𝑨𝐾
𝑝𝑠

𝑨𝐾
𝑝𝑝

𝑩𝐾
𝑝

𝑪𝐾
𝑠

𝑪𝐾
𝑝

𝑫𝐾

⎤⎥⎥⎥⎦ ,
𝒙𝐾
𝑘

∈ R
𝑛, 𝝑𝐾

𝑘
∈ R

𝑛𝛿 , and 𝒙𝐾0 = 𝟎. The state–space realization of the
controller after closing the LFR is given by[
𝒙𝐾
𝑘+1
𝒖̄𝑘

]
=

[
𝑨𝐾
𝑐𝑙
(𝑘̄1) 𝑩𝐾

𝑐𝑙
(𝑘̄1)

𝑪𝐾
𝑐𝑙
(𝑘̄1) 𝑫𝐾

𝑐𝑙
(𝑘̄1)

][
𝒙𝐾
𝑘

𝒚̄𝑘

]
,

where

𝑨𝐾
𝑐𝑙
(𝑘̄1) = 𝑨𝐾

𝑠𝑠
+𝑨𝐾

𝑠𝑝
𝜟𝑨𝐾

𝑝𝑠
, 𝑩𝐾

𝑐𝑙
(𝑘̄1) = 𝑩𝐾

𝑠
+𝑨𝐾

𝑠𝑝
𝜟𝑩𝐾

𝑝
,

𝑪𝐾
𝑐𝑙
(𝑘̄1) = 𝑪𝐾

𝑠
+ 𝑪𝐾

𝑝
𝜟𝑨𝐾

𝑝𝑠
,

𝑫𝐾
𝑐𝑙
(𝑘̄1) = 𝑫𝐾 + 𝑪𝐾

𝑝
𝜟𝑩𝐾

𝑝
, and 𝜟 = 𝑘̄1(𝑰 − 𝑘̄1𝑨𝐾𝑝𝑝)

−1.

The performance output for the controller is chosen as

𝒛̄ = [0.1𝑉𝑎, 3 × 10−3𝛽, 2.2𝑝̄, 1.5𝑟̄, 0.5𝜙̄𝑒, 0.85𝜃̄𝑒, 0.45𝜓̄𝑒, 0.0255𝑥𝑒,
0.2𝑦𝑒, 0.05𝑧𝑒, 0.8𝛿𝐸, 1.1𝛿𝐴dyn

, 4.0𝛿𝑅dyn
, 3.4𝛿𝑇]𝑇 ,

where 𝛿𝐴dyn
and 𝛿𝑅dyn

are the aileron and rudder deflections passed

through first-order dynamic filters, respectively. The choice of the per-

formance output is driven by the requirement to minimize the position

82

D. Muniraj et al. Control Engineering Practice 67 (2017) 76–91

error between the UAS and the virtual vehicle and to have minimum

control actuation. In addition to penalizing the errors in the position

and attitude angles, it is found that penalizing the sideslip angle, roll

rate, and yaw rate decreases the likelihood of rudder saturation during

tighter turns. To minimize the high-frequency oscillations observed in

the aileron and rudder deflections, the high-frequency components are

more heavily penalized by passing them through high-pass filters. First-

order discrete-time high-pass filters with a cut-off frequency of 1.5 Hz

and 1 Hz are used on the aileron and rudder deflections, respectively.

The introduction of the dynamic filters increases the number of system

states in (16) by two. Since incorporating dynamic weights results in

additional system states and hence more controller states, in the control

design it is preferred to restrict the use of dynamic weights unless

deemed necessary. With this said, the utility of using dynamic penalty

weights on states, as well as functions of states and disturbances, was

actually explored during control design, but it was found that any

improvement in performance achieved was not significant and did not

justify the increase in problem size.

During the control design process, it is found that approximating

𝑞𝑡𝑟, 𝜙𝑡𝑟, 𝜃𝑡𝑟, 𝑤𝑡𝑟, and 𝛿𝐸𝑡𝑟 as parameter-varying trims did not improve

the controller performance and simply increased the size of the LFR.

Therefore, the four trim states and the trim elevator input are fixed at the

values corresponding to 𝑘1 = 0 resulting in 𝑛𝛿 = 10. All computations are
carried out on a Dell Precision T3500 Desktop running 64-bit Windows

7, with an Intel Xeon W3550 Quad Core processor and 6 GB of RAM.

SDPs in the controller synthesis problem are solved in MATLAB 2014a
using the YALMIP toolbox (Löfberg, 2004) with SeDuMi (Sturm,

1999) as the solver, and the SDP to obtain 𝐽 , that is, the controller

state-space matrices, is solved using the MATLAB function basiclmi.
The resulting controller synthesis problem is solved in 12.5 s, and the

optimal value of 𝛾 is found to be 𝛾min = 2.61, which is relaxed to 𝛾 = 5.21
to obtain satisfactory robust performance, and the synthesis problem is

re-solved. The resulting LPV controller has 20 system states and 10 states

pertaining to the parameter 𝑘̄1.

Balanced truncation model reduction of the LPV ∞ Controller

In view of the onboard implementation of the LPV controller on the

UAS platform and its real-time execution, the higher number of states

of the LPV controller poses a challenge. Therefore, it is necessary to

reduce the number of states of the LPV controller without losing its

stability and performance guarantees by an appropriate model reduction

technique. The Balanced Truncation (BT) model reduction method for

systems represented by an LFR, described in Beck, Doyle, and Glover

(1996) and Beck (2006), is a suitable method as it provides a guaranteed

upper bound on the error between the original and the reduced system.

With the notion of strong stability as defined in Beck (2006), the

LPV ∞ controller, denoted by 𝑘, with state–space matrices given by

𝑱 is found to be strongly stable, thereby making it possible to apply

the BT model reduction method. Before presenting the model reduction

procedure, the matrices 𝑨𝐾 , 𝑩𝐾 , and 𝑪𝐾 are defined from 𝑱 as

𝑨𝐾 =

[
𝑨𝐾
𝑠𝑠

𝑨𝐾
𝑠𝑝

𝑨𝐾
𝑝𝑠

𝑨𝐾
𝑝𝑝

]
, 𝑩𝐾 =

[
𝑩𝐾
𝑠

𝑩𝐾
𝑝

]
, and 𝑪𝐾 =

[
𝑪𝐾
𝑠

𝑪𝐾
𝑝

]
.

The controllability gramian, 𝑿, and the observability gramian, 𝒀 , are

obtained by solving the following Lyapunov inequalities:

𝑨𝐾𝑿(𝑨𝐾)𝑇 −𝑿 + 𝑩𝐾 (𝑩𝐾)𝑇 ≺ 𝟎 and

(𝑨𝐾)𝑇 𝒀 𝑨𝐾 − 𝒀 + (𝑪𝐾)𝑇𝑪𝐾 ≺ 𝟎.

The gramians𝑿 and 𝒀 are positive definite block-diagonal matrices that

are structured according to the partitions in 𝑨𝐾 . In particular, solutions

𝑿 and 𝒀 with minimum trace are solicited to have a reasonable error

bound.

Using the solutions 𝑿 and 𝒀 , a balancing transformation 𝑻 and a di-

agonal gramian𝜮 are constructed as outlined in Section 6.9 of Gugercin

and Antoulas (2004). The balancing transformation 𝑻 is then used to

construct a balanced system with the following state–space matrices:

𝑨̂𝐾 = 𝑻𝑨𝐾𝑻 −1, 𝑩̂𝐾 = 𝑻𝑩𝐾, 𝑪̂𝐾 = 𝑪𝐾𝑻 −1, 𝑫̂𝐾 = 𝑫𝐾.

Note that 𝑻 and 𝜮 are also structured according to the partitions in 𝑨𝐾 .

The diagonal gramian 𝜮 is given by 𝜮 = diag(𝜮𝟏,𝜮𝟐), where

𝜮𝟏 = diag(𝜎1𝑰𝑑1 ,… , 𝜎𝑗1
𝑰𝑑𝑗1

,… , 𝜎𝐿𝑰𝑑𝐿),
𝐿∑
𝑖=1
𝑑𝑖 = 𝑛,

𝜮𝟐 = diag(𝜎𝐿+1𝑰𝑑𝐿+1 ,… , 𝜎𝑗2
𝑰𝑑𝑗2

,… , 𝜎𝑀𝑰𝑑𝑀),
𝑀∑

𝑖=𝐿+1
𝑑𝑖 = 𝑛𝛿,

𝜎1 > 𝜎2 >⋯ > 𝜎𝐿 > 0, 𝜎𝐿+1 > 𝜎𝐿+2 >⋯ > 𝜎𝑀 > 0,

and 𝑑𝑖 is the multiplicity of 𝜎𝑖. The singular values less than 𝜎𝑗1 and

𝜎𝑗2
are truncated from 𝜮𝟏 and 𝜮𝟐, respectively, which results in the

following bound on the error between the original system, 𝑲, and the

reduced-order system, 𝑲𝒓, for all permissible values of the scheduling

parameter:

‖𝑲 −𝑲𝒓‖𝓁2→𝓁2
≤ 2(𝜎𝑗1+1 +⋯ + 𝜎𝐿) + 2(𝜎𝑗2+1 +⋯ + 𝜎𝑀).

The reduced-order system is obtained from the balanced system by

removing the rows and columns corresponding to the truncated states

from the system matrices. The singular values comprising 𝜮 and the

truncated singular values for the LPV controller𝑲 are shown in Fig. 7(a).

Using 0.05 as a threshold, four system states and three parameter states

are truncated with an error bound of 0.253 and a relative error bound

of 6.5%. To obtain a tighter error bound, a heuristic based on the 1-

norm is used to obtain a larger number of repeated singular values,

see Abou Jaoude and Farhood (2017) for more details. Since repeated

singular values are counted only once in the computation of the error

bound, this heuristic helps in reducing the error bound. Using the

heuristic, the error bound for truncating the same number of states is

reduced to 0.093 and the relative error bound to 2.3%. Fig. 7(b) shows

the singular values and the truncated singular values using the heuristic.

The reduced-order controller has 23 states consisting of 16 system states

and 7 parameter states. The performance of the reduced-order controller

is comparable to that of the original LPV controller, and the reduction

in position tracking performance is less than 0.2%.

4.3. LTI ∞ Controller

A standard ∞ controller, henceforth referred to as the LTI con-

troller, is designed for the LTI plant obtained from (15) by taking

𝑘1 = 0. The synthesis procedure for designing a standard ∞ controller

is described in detail in Gahinet and Apkarian (1994), which is also

presented here for the sake of completeness. Firstly, the following SDP

is solved for 𝛾, 𝑹, and 𝑺:

minimize ∶ 𝛾2

subject to ∶ 𝑭 𝑇𝑹𝑭 − 𝑽 𝑇1 𝑹𝑽1 +𝑴
𝑇𝑴 − 𝛾2𝑽 𝑇2 𝑽2 ≺ 𝟎,[

𝑾 𝑇𝑺𝑾 − 𝑼𝑇1 𝑺𝑼1 − 𝑼𝑇2 𝑼2 𝑳𝑇

𝑳 −𝛾2𝑰𝑛𝑧

]
≺ 𝟎,[

𝑹 𝑰

𝑰 𝑺

]
⪰ 𝟎,

where

𝑭 = 𝑨𝑇 𝑽1 + 𝑪𝑇1 𝑽2, 𝑴 = 𝑩𝑇1 𝑽1 +𝑫
𝑇
11𝑽2,

𝑾 = 𝑨𝑼1 + 𝑩1𝑼2, 𝑳 = 𝑪1𝑼1 +𝑫11𝑼2,

Im
[
𝑽 𝑇1 𝑽 𝑇2

]𝑇= Ker
[
𝑩𝑇2 𝑫𝑇

12
]
,
[
𝑽 𝑇1 𝑽 𝑇2

] [
𝑽 𝑇1 𝑽 𝑇2

]𝑇= 𝑰 ,

Im
[
𝑼𝑇1 𝑼𝑇2

]𝑇= Ker
[
𝑪2 𝑫21

]
,
[
𝑼𝑇1 𝑼𝑇2

] [
𝑼𝑇1 𝑼𝑇2

]𝑇= 𝑰 .

Next, using the solutions 𝑹 and 𝑺, the following SDP is solved for 𝑱 :

𝑯 + 𝑷 𝑇 𝑱𝑸 +𝑸𝑇 𝑱 𝑇𝑷 ≺ 𝟎,

83

D. Muniraj et al. Control Engineering Practice 67 (2017) 76–91

(a) Singular values of 𝜮. (b) Singular values of 𝜮 obtained using the heuristic.

Fig. 7. The singular values pertaining to 𝜮𝟏 are shown in blue and the singular values pertaining to 𝜮𝟐 are shown in red, and the truncated singular values are shown in the inset.

where

𝑯 =
⎡⎢⎢⎣
−𝑿−1

 


𝑇 −𝑿 1


𝑇

2 

⎤⎥⎥⎦ , 𝑿 =
[

𝑺 −𝑺𝑴
−𝑴𝑇𝑺 𝑰 +𝑴𝑇𝑺𝑴

]
,

𝑿−1 =
[
𝑹 𝑴

𝑴𝑇 𝑰

]
, 𝑴 = (𝑹 − 𝑺−1)1∕2,

𝑷 =
[
𝟎 𝑰 𝟎𝑛×2𝑛+𝑛𝑤 𝟎
𝑩𝑇2 𝟎 𝟎 𝑫𝑇

12∕𝛾

]
,

𝑸 =
[
𝟎𝑛×2𝑛 𝟎 𝑰 𝟎 𝟎𝑛×𝑛𝑧
𝟎 𝑪2 𝟎 𝑫21 𝟎

]
,  =

[
𝑨 𝟎
𝟎 𝟎𝑛×𝑛

]
,

 =
[
𝑩1 𝟎
𝟎 𝟎𝑛×𝑛𝑑

]
, 1 =

[
𝑪𝑇1 ∕𝛾 𝟎
𝟎 𝟎𝑛×𝑛𝑧

]
,

2 =
[

𝟎 𝟎𝑛𝑑×𝑛
𝑪1∕𝛾 𝟎

]
,  =

[
−𝑰𝑛𝑤 𝑫𝑇

11∕𝛾
𝑫11∕𝛾 −𝑰𝑛𝑧

]
.

Finally, the state–space model of the LTI controller can be constructed

from 𝑱 as follows:[
𝒙𝐾
𝑘+1
𝒖̄𝑘

]
=
[
𝑨𝐾 𝑩𝐾

𝑪𝐾 𝑫𝐾

] [
𝒙𝐾
𝑘

𝒚̄𝑘

]
, where 𝑱 =

[
𝑨𝐾 𝑩𝐾

𝑪𝐾 𝑫𝐾

]
and 𝒙𝐾0 = 𝟎.

The performance output for the LTI controller in Fig. 4 is chosen as

𝒛̄ = [0.3𝑉𝑎, 0.15𝛽, 0.25𝜙̄𝑒, 0.85𝜃̄𝑒, 0.45𝜓̄𝑒, 0.0255𝑥𝑒,

0.08𝑦𝑒, 0.153𝑧𝑒, 0.9𝛿𝐸, 0.09𝛿𝐴, 1.1𝛿𝑅, 3.0𝛿𝑇]𝑇 .

The controller synthesis problem is solved in 9.6 s and an optimal value

𝛾min = 0.91 is found. The value of 𝛾 is then relaxed to 1.82 to increase
robustness, and the control synthesis problem is re-solved.

4.4. Rate-tracking controller

The rate-tracking (RT) controller consists of a nonlinear outer-loop

control law based on Kaminer et al. (2010), which generates pitch

and yaw rate commands, and an inner-loop ∞ controller which tracks

the commands generated by the nonlinear outer-loop control law. The

nonlinear outer-loop control law is designed via backstepping, whereby

the pitch and yaw rates, 𝑞 and 𝑟, play the role of virtual control inputs.

These commands are defined as[
𝑞𝑐
𝑟𝑐

]
= 𝑸−1

𝑐
(𝜃𝑒, 𝜙𝑒)

([
𝜃𝑐
𝜓𝑐

]
−𝑫𝑐 (𝜃𝑒, 𝜓𝑒,𝓁)

)
, (18)

with the following auxiliary definitions:

𝑸𝑐 (𝜃𝑒, 𝜙𝑒) =
⎡⎢⎢⎣
cos𝜙𝑒 − sin𝜙𝑒
sin𝜙𝑒
cos 𝜃𝑒

cos𝜙𝑒
cos 𝜃𝑒

⎤⎥⎥⎦ ,
𝑫𝑐 (𝜃𝑒, 𝜓𝑒,𝓁) = 𝓁̇

[
𝑘2(𝓁) cos𝜓𝑒

−𝑘1(𝓁) + 𝑘2(𝓁) tan 𝜃𝑒 sin𝜓𝑒

]
,

𝜃𝑐 = −𝐾2(𝜃𝑒 − 𝜃𝑎) + 𝐶3𝑧𝑒𝑉𝑎
sin 𝜃𝑒 − sin 𝜃𝑎
𝜃𝑒 − 𝜃𝑎

+ 𝜃̇𝑎,

𝜓𝑐 = −𝐾3(𝜓𝑒 − 𝜓𝑎) + 𝐶3𝑦𝑒𝑉𝑎 cos 𝜃𝑒
sin𝜓𝑒 − sin𝜓𝑎
𝜓𝑒 − 𝜓𝑎

+ 𝜓̇𝑎,

𝜃𝑎 = sin−1
𝑧𝑒|𝑧𝑒| + 𝑑1 , 𝜓𝑎 = sin−1

−𝑦𝑒|𝑦𝑒| + 𝑑2 ,
where 𝑑1, 𝑑2, 𝐾2, 𝐾3, and 𝐶3 are positive constants. In Kaminer et al.

(2010), the pitch and yaw rate commands, 𝑞𝑐 and 𝑟𝑐 , generated by the

nonlinear control law are tracked by a Piccolo autopilot augmented by

an 1 adaptive controller in the inner loop. In this work, the nonlinear

control law (18) is used to generate 𝑞𝑐 and 𝑟𝑐 , which are then tracked

by a standard ∞ controller.

Instead of tracking the pitch and yaw rate commands given by (18)

directly, the output of an ideal response model is tracked as in the

example found in Doyle, Lenz, and Packard (1986). The pitch and

yaw rate commands are passed through a second-order filter with

𝜔𝑛 = 12 rad∕s and 𝜁 = 0.8 to obtain the ideal pitch and yaw rate

commands, which the inner-loop ∞ controller seeks to track. The LTI

plant for the inner-loop∞ controller is obtained in a manner similar to

what is described in Sections 4.2 and 4.3. The state, measurement, and

disturbance vectors are defined as 𝒙 = [𝒗𝑇 , 𝝎𝑇 , 𝜙𝑒, 𝜃𝑒, 𝒙𝑇𝑎 ,𝒙
𝑇
𝑚
]𝑇 , 𝒘 =

[𝒗𝑇
𝑤
, 𝒘𝑇

𝑚
, 𝒘𝑇

𝑐
]𝑇 , and 𝒚 = [𝑝, 𝑞 − 𝑞ideal, 𝑟 − 𝑟ideal, 𝑉𝑎, 𝜙𝑒, 𝜃𝑒]𝑇 , where 𝒘𝑚 =

[𝑚𝑝, 𝑚𝑞, 𝑚𝑟, 𝑚𝑉𝑎 , 𝑚𝜙, 𝑚𝜃]
𝑇 , 𝒘𝑐 = [𝑞𝑐 , 𝑟𝑐]𝑇 . 𝑞ideal and 𝑟ideal are the outputs

of the ideal response model, and 𝒙𝑚 denotes the states corresponding to

the two second-order filters of the ideal response model. The weighting

matrix 𝑾𝑤 is chosen as 𝑾𝑤 = diag(3𝑰3, 0.026𝑰3, 6, 0.03𝑰2, 𝑰2).
The synthesis procedure for the inner-loop ∞ controller parallels

the steps outlined in Section 4.3 and is therefore omitted here. The

performance output for the controller is chosen as

𝒛̄ = [𝑞 − 𝑞ideal, 1.52(𝑟 − 𝑟ideal + 1.57𝛿𝐴), 0.02𝑉𝑎, 0.6𝛼̄, 0.6𝛽, 𝛿𝐸, 0.84𝛿𝐴,

0.34𝛿𝑅, 0.1𝛿𝑇]𝑇 .

The controller synthesis problem is solved in 3.9 s, with 𝛾min = 1.0.
The value of 𝛾 is relaxed to 2.0 to improve robustness, and the control

synthesis problem is re-solved.

84

D. Muniraj et al. Control Engineering Practice 67 (2017) 76–91

Table 3

Controller Parameters for the PID Path-Following Controller.

Parameter Value Parameter Value Parameter Value

PTCH2SRV_TCONST 0.4 RLL2SRV_TCONST 0.5 YAW2SRV_INT 0.0

PTCH2SRV_P 1.85 RLL2SRV_P 0.4 YAW2SRV_DAMP 0.1

PTCH2SRV_D 0.02 RLL2SRV_D 0.02 YAW2SRV_SLIP 0.0

PTCH2SRV_I 0.06 RLL2SRV_I 0.04 YAW2SRV_RLL 1.0

PTCH2SRV_RLL 1.0 ARSPD_FBW_MIN 9.0 TECS_INTEG_GAIN 0.1

PTCH2SRV_RMA_DN -25 deg ARSPD_FBW_MAX 22.0 TECS_RLL_THR 10.0

PTCH2SRV_RMA_UP 20 deg TECS_SPDWEIGHT 1.0 THR_SLEWRATE 100

NAVL1_PERIOD 20 NAVL1_DAMPING 0.75 TECS_THR_DAMP 0.5

THR_MAX 0.9 THR_MIN 0.1 TRIM_THROTTLE 0.45

TECS_CLIMB_MAX 5.0 TECS_SINK_MAX 5.0 TECS_TIME_CONST 4.0

4.5. PID path-following controller

The three controllers presented thus far are model-based controllers.

In this subsection, a model-free path-following controller based on the

controller used in the commercially available and widely used autopilot

software ArduPilot is presented. This controller, henceforth referred to

as the PID controller, is selected to compare the performance of the

robust control methods presented in this paper with a widely used

control method in the UAS community.

The PID controller has a cascaded architecture, where the inner-

loop is composed of three PID controllers for each of the three control

surfaces, and a total energy controller for the throttle. A nonlinear

guidance logic based on Park et al. (2004) forms the outer-loop, and

generates lateral acceleration commands depending on the speed of the

aircraft and how far the aircraft is from the reference path. The guidance

logic has only two modes, one for tracking a straight line path and the

other for tracking a circular path. This limits the reference paths to

straight lines, circles, and concatenations of straight line and circular

paths. For more details on the PID controller, the interested reader

is referred to ArduPilot (2016b). The PID controller is tuned based

on closed-loop simulations with the nonlinear UAS model described in

Section 2. The controller parameters are provided in Table 3, where the

terminology used is the same as in ArduPilot (2016b).

5. Simulation environment

A rigorous MATLAB simulation environment is used to compare the
performances of the controllers presented in the previous section. The

simulation environment is designed to subject the small UAS to pro-

portionally significant atmospheric disturbances while mimicking the

implementation of the controller onboard the Telemaster UAS platform.

The nonlinear rigid body equations of motion (1) are simulated using

ODE23. The simulation environment includes the actuator dynamics

and the second-order throttle dynamics described in Section 2.2. A one-

step time delay is also included in simulations to mimic the autopilot

system onboard the Telemaster UAS. Namely, measurements taken at

the discrete time instant 𝑘 are used to calculate the control input applied

at time 𝑘 + 1. The LTI, LPV, and PID path-following controllers are

executed at 25 Hz. While the inner-loop of the RT controller is executed

at 25 Hz, the outer-loop is executed at a slower rate of 12.5 Hz to enable

real-time implementation.

5.1. Simulated disturbances

The UAS is subjected to a 3.5 m/s steady wind in the North-East

direction in addition to wind gusts modeled using the Dryden wind

turbulence model (MIL-F-8785C) (Moorhouse & Woodcock, 1982).

The UAS operates at altitudes under 1000 ft AGL, so corresponding

low altitude scalings and wind intensities are used (Gage, 2003). The

turbulence wind velocities are given by the following transfer functions:

𝐻𝑢(𝑠) =
𝑢20

10ℎ1∕3

√
2𝐻
𝜋𝑉𝑎ℎ

1
1 + 𝐻

𝑉𝑎ℎ
𝑠
,

𝐻𝑣(𝑠) =
𝑢20

10ℎ1∕3

√
𝐻

𝜋𝑉𝑎ℎ

1(
1 + 𝐻

𝑉𝑎ℎ
𝑠

)2 ,
𝐻𝑤(𝑠) =

𝑢20
10

√
𝐻

𝜋𝑉𝑎

1(
1 + 𝐻

𝑉𝑎
𝑠

)2 ,
(19)

where𝐻 is the current vehicle altitude in ft AGL, 𝑢20 is the average wind

speed at 20 ft AGL in knots, and ℎ = (0.177 + 0.000823𝐻)1.2. A value of
𝑢20 = 30 knots is used in this work.

Sensor noise is simulated from a normal distribution with standard

deviations of 𝜎𝑉𝑎 = 2m∕s, 𝜎𝑝∕𝑞∕𝑟 = 0.5 deg∕s, 𝜎𝜙∕𝜃∕𝜓 = 0.57 deg, and
𝜎𝑁∕𝐸∕𝐻 = 2m. The values for the standard deviations are obtained from
sensor specifications and bench tests. It is noted that identical time

histories of atmospheric disturbances and sensor noise are used with

each controller investigated.

5.2. Reference paths

The reference paths chosen for comparing the different controllers

are shown in Fig. 8. The lemniscate path has a smooth variation of 𝑘1
and is generated by the functions

𝑁ref (𝜉) =
3 cos(𝜉)

𝑘1max
(1 + sin(𝜉)2)

and 𝐸ref (𝜉) =
3 sin(𝜉) cos(𝜉)

𝑘1max
(1 + sin(𝜉)2)

(20)

for 𝜉 ∈ [𝜋∕2, 5𝜋∕2], where 𝑘1max
is a scaling parameter representing the

maximum value of 𝑘1 over the entire path. Since only planar paths are

considered, 𝐻ref (𝜉) = 0 for all 𝜉 ∈ [𝜋∕2, 5𝜋∕2]. A circular path with a
constant value of 𝑘1 equal to 𝑘1max

is generated by the functions

𝑁ref (𝜉) =
cos(𝜉)
𝑘1max

and 𝐸ref (𝜉) =
sin(𝜉)
𝑘1max

for 𝜉 ∈ [0, 2𝜋]. (21)

The reference paths shown in Fig. 8 correspond to 𝑘1max
= 0.0071,

𝑘1max
= 0.009, and 𝑘1max

= 0.0125 for the moderate lemniscate, circular,
and the tighter lemniscate paths, respectively.

5.3. Performance metrics

Several performance metrics are used in order to quantitatively

compare the performances of the different controllers. The three criteria

used are the mean path error, the control effort, and the average path

time.

In order to accurately calculate the path error, the parameter interval

of 𝜉 is finely discretized into 𝑛𝜉 points denoted as 𝜉1, 𝜉2,… , 𝜉𝑛𝜉
. The set

of parameterized reference points 𝑅 characterizing the reference path is

then defined as

𝑅 =
{
𝒑(𝜉𝑖) for 𝑖 = 1, 2,… , 𝑛𝜉

}
, (22)

85

D. Muniraj et al. Control Engineering Practice 67 (2017) 76–91

Fig. 8. Moderate lemniscate (blue), circular (red), and tighter lemniscate (green) reference paths and their associated 𝑘1 histories. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

Fig. 9. UAS platform.

where 𝒑(𝜉𝑖) = (𝑁ref (𝜉𝑖), 𝐸ref (𝜉𝑖),𝐻ref (𝜉𝑖)) is expressed in 𝐼 . The mini-

mum distance between any point 𝒂 and the reference path 𝑅 is then

defined as

dist (𝒂, 𝑅) = {inf ‖𝒂 − 𝒃‖2| 𝒃 ∈ 𝑅}, (23)

where ‖ ⋅‖2 denotes the standard Euclidean norm. Given equations (22)
and (23), the mean path error is defined as

MPE = 1
𝑁̄

𝑁̄∑
𝑘=1

dist(𝒑(𝑘), 𝑅), (24)

where 𝒑 is the UAS location in 𝐼 , and 𝑁̄ is the total number of

measurements taken. The root-mean-square control effort is defined as

𝑢𝑟 =

√√√√√ 1
𝑁̄

𝑁̄∑
𝑘=1

𝒖̄(𝑘)𝑇 𝒖̄(𝑘). (25)

The third metric used is the average path time (APT) to complete the

given reference path.

6. UAS test platform

The UAS platform used in the flight tests is based on the Senior

Telemaster Plus fixed-wing radio-controlled aircraft fromHobby Express

(2017). The aircraft is electrically powered using lithium polymer bat-

teries and has a conventional landing gear with a tailwheel. The sensor

suite of the UAS consists of a barometric pressure sensor (MS5611)

for altitude measurement, a differential pressure sensor (4525DO) for

airspeed measurement, a satellite-based augmentation system (SBAS)

enabled U-blox NEO-7 GPS module for position measurement, and

a miniature MPU 6000 inertial measurement unit from Invensense.

An in-house built five hole air-data probe is utilized for obtaining

measurements of the angle of attack and the angle of sideslip, which

are used in the development of the aerodynamic model. The barometric

pressure sensor and the inertial measurement unit are housed inside the

Pixhawk (described next), while the other sensors are connected to the

Pixhawk through serial or I2C peripherals.

The Autopilot system consists of two components: a 3DR Pix-

hawk (Pixhawk, 2017) and a Gumstix Overo Fire (Gumstix, 2017).

The Pixhawk uses open-source ArduPilot firmware which is customized

for the UAS platform. The Gumstix runs a light-weight version of Linux

called the Yocto project and provides sufficient computing power for

running advanced control and visual data processing algorithms in

near-real-time. The computational tasks in the autopilot are shared

between the Pixhawk and the Gumstix. The Pixhawk is responsible for

input/output tasks and redundancy management. While the Pixhawk

is adequate for executing basic stabilization and navigation tasks,

more computationally demanding control and navigation algorithms

are executed in the Gumstix Overo COM. All the control algorithms

presented in this work are coded using Python and executed on the

Gumstix. The Gumstix receives sensor measurement data from and sends

control commands to the Pixhawk through a serial connection. The

UAS transmits data to the ground station through an XBEE 900 Pro,

point-to-multipoint radio modem. The Ground Control Station (GCS)

module uses the open-source APM Mission planner and displays flight

parameters in real-time during flight tests. Fig. 9 shows the UAS platform

with the important subsystems marked on it.

7. Results and discussion

7.1. Simulation results

Simulations are performed with the four different controllers pre-

sented in Section 4 under the conditions outlined in Section 5. In order

for the simulation results to be statistically meaningful, each controller is

tasked to track the reference path 1000 times consecutively. Simulation

results are presented for the moderate lemniscate and the circular

reference paths. The performances of the controllers are compared in

terms of the three performance metrics described earlier, namely the

mean path error, the control effort, and the average path time. Since

the PID controller is only capable of tracking circular paths and straight

line paths, the lemniscate path cannot be tracked as it has a continuously

changing curvature. Therefore, to evaluate the performance of the PID

controller, the lemniscate path is approximated as a polygon with 17

edges.

The distribution of the mean path error over 1000 circuits for

the moderate lemniscate and circular paths is presented for each of

the four controllers in Fig. 10. A cumulative distribution function

(CDF)-like representation is used to succinctly display the position

tracking performance of the controllers based on the simulation results.

A summary of the values of the performance metrics is provided in

Table 4.

All the four controllers are able to successfully complete the 1000

circuits. For both of the paths, the LPV controller has the lowest MPE.

For the lemniscate path, the LPV controller has an MPE of 2.57 m with

a standard deviation of 𝜎 = 0.059 m. While the LTI controller has a
higher MPE compared to the LPV controller, it performs better than

the RT and PID controllers. Although the MPE of the PID controller

86

D. Muniraj et al. Control Engineering Practice 67 (2017) 76–91

Fig. 10. RT, LTI, LPV, and PID MPEs over 1000 loops. The CDF-like representation is

used to succinctly display the results. For example, the point marked by (x) on the plot

has coordinates (2.564, 0.5), indicating that in 50% of the 1000 loops, the MPE value is

less than or equal to 2.564m. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

Table 4

Path-Following Performance Results Based on Simulation.

Moderate lemniscate Circle

MPE 𝑢𝑟 APT MPE 𝑢𝑟 APT

RT 4.43 ± 0.033 0.243 153.44 4.16 ± 0.065 0.258 48.52

LTI 3.66 ± 0.030 0.249 153.33 3.61 ± 0.068 0.248 48.44

LPV 2.57 ± 0.059 0.279 142.20 2.65 ± 0.094 0.292 44.72

PID 4.31 ± 0.169 0.235 157.04 3.72 ± 0.253 0.236 49.08

Note: The values provided for MPE are the mean and standard deviation of the mean

path errors over 1000 loops.

is comparable to that of the RT controller, the PID controller has a

higher standard deviation of 0.169 m. The control effort exerted by the

PID controller, however, is the lowest among all the controllers. The

LTI and RT controllers have comparable values of 𝑢𝑟, which are lower

than the control effort exerted by the LPV controller. It is found that

in the presence of disturbances, the aileron and rudder input energies

demanded by the LPV controller are higher in order to maintain better

position tracking. Efforts to reduce 𝑢𝑟 for the LPV controller, such as

increasing the performance weights on the aileron and rudder control

inputs and using different high-pass filters, have not been very successful

and ended up increasing the MPE. It is inferred that the LPV controller’s

better position tracking capability comes at the expense of increased

control effort. Among all the controllers, the PID controller has the

highest APT of 157.04 s. The APT for the LTI controller is comparable to

that for the RT controller, but the APT for the LPV controller is the lowest

among the four. It is observed that the RT, LTI, and PID controllers have

difficulty maintaining an appropriate airspeed and have a tendency to

slow down. The LPV controller, however, is able to successfully maintain

the desired airspeed in the midst of disturbances, and as a result yields

a lower APT than the other controllers. A similar observation holds for

the case of no disturbances. A possible reason for this behavior could

be the use of parameter-varying trim points in the LPV control design,

whereby the controller continuously corrects the trim states and control

commands as the curvature of the reference path changes.

It can be seen from Table 4 that the qualitative observations made

with respect to the lemniscate path also hold true for the circular

path. The PID and RT controllers show the most improvement in MPE

compared to their corresponding lemniscate mean path errors. The MPE

values for the LTI and LPV controllers are similar to their lemniscate

counterparts, with the LPV controller having a slightly higher MPE for

the circular path than for the lemniscate path. While the 𝑢𝑟 values for the

LTI and PID controllers are similar to their corresponding values in the

lemniscate case, the RT and LPV controllers have slightly higher values

for 𝑢𝑟. As in the lemniscate case, the LPV controller maintains airspeed

better than the other controllers and has the lowest APT, although the

difference in APT is not as pronounced due to the shorter path length.

Table 5

Path-Following Performance Results from Flight Tests.

Moderate lemniscate

MPE 𝑢𝑟 APT Wind (m/s)

RT 4.99 0.227 146.7 2.5 - 3.5

LTI 3.91 0.239 146.2 2.5 - 3.5

LPV 3.41 0.353 138.0 2.5 - 3.5

LTI 2.97 0.234 147.4 < 2.0

LPV 2.64 0.327 141.7 < 2.0

Circle

MPE 𝑢𝑟 APT Wind (m/s)

RT 5.18 0.211 47.3 3.0 - 3.5

LTI 3.78 0.212 47.8 3.0 - 3.5

LPV 3.56 0.318 46.5 3.0 - 3.5

PID 4.71 0.171 46.5 3.0 - 3.5

For both paths, the circuit with the worst MPE is shown in Fig. 11 for

each of the four controllers. The initial position of the vehicle is at (0, 0),
and the direction of the vehicle along the path is indicated in the figure

by a black arrow. While bias in position tracking is evident for each

controller due to the presence of wind, the RT controller additionally

suffers from oscillations in the 𝒙𝐼𝒚𝐼 -plane. It is found that any attempt

to damp out these oscillations for the worst-case circuit degrades the

overall path-following performance of the RT controller.

For completeness, the performances of the controllers are studied in

a flight regime different from the one used in designing the controllers.

Specifically, simulations are performed at a different nominal flight

condition, where the altitude and the airspeed are chosen as 660m and

20m/s, respectively. As expected, the mean path error increases for all

four controllers due to the change in the operating flight condition. The

increase in the MPE values, however, is smallest for the RT controller. A

possible explanation could be the ability of the backstepping controller,

which is used in the outer-loop of the RT controller, to adapt to the new

flight condition more effectively than the other controllers. Moreover,

it is noticed that the qualitative observations made in the previous

paragraphs also hold true for this flight regime.

7.2. Flight test results

This section presents results from flight tests conducted using the

UAS platform described in Section 6. The flight tests are conducted at

the Kentland Experimental Aerial Systems (KEAS) laboratory located

at Virginia Tech’s agricultural research facility. To enable comparison

between the controllers, multiple flights are performed with each

controller to collect data at similar wind conditions. The wind speeds

during the flight tests are obtained by subtracting the GPS derived

ground speed from the airspeed measured by the airspeed sensor. A

wind vane located near the airstrip provides the wind direction. The

software implementation of each controller is first tested in a hardware-

in-the-loop simulation (HILS) setup, which consists of the autopilot

hardware interfaced with a laptop to simulate the UAS dynamics. The

HILS verified controller code is then executed on the UAS.

A summary of the flight test results is provided in Table 5. Fig. 12

shows the position tracking performance of the controllers for the

moderate lemniscate and circular paths under similar wind conditions.

Flight test results of the PID controller for the lemniscate path are

not provided as the UAS had large overshoots in position due to the

polygonal approximation of the path. Hence, only flight test results for

the circular path are provided for the PID controller. Similar to the

results from the simulation studies, the LPV and RT controllers have the

lowest and highest MPE, respectively, among all the controllers for both

of the paths. However, the difference in MPE between the LPV and LTI

controllers is not as significant as in simulation. For all the controllers,

the MPE from flight tests is higher compared to simulation. This could

be attributed to uncertainties in the inertial properties, throttle model

87

D. Muniraj et al. Control Engineering Practice 67 (2017) 76–91

Fig. 11. The worst-case simulation runs for each controller in tracking the moderate lemniscate and circular paths, where dist(𝒑(𝑘), 𝑅) is as defined in Eq. (23) and is expressed in meters.

and the aerodynamic nonlinearities, which are difficult to completely

capture in the mathematical model of the UAS used in control design.

While the control efforts exerted by the RT and LTI controllers are

comparable, the 𝑢𝑟 for the LPV controller is higher in comparison by

about 50%. The increase in 𝑢𝑟 is due to the higher values of aileron and

rudder control inputs demanded by the LPV controller. The PID con-

troller is once again the most economical in terms of control effort. The

APT to traverse the circular path is comparable for all the controllers,

however, the LPV controller has lower APT for the lemniscate path in

comparison to the LTI and RT controllers.

From the flight test results, it is observed that the performances of

the LTI and LPV controllers are similar. This is not very surprising as

the reference paths considered do not involve a sharp variation in 𝑘1.

The LPV controller is synthesized for arbitrary variations of 𝑘1 subject

to the condition |𝑘1| ≤ 0.0141, while the LTI controller is synthesized
by linearizing the lumped path-following and UAS dynamics about

𝑘1 = 0. Thus, in order to fully explore the capabilities of the LPV

controller, flight tests with the tighter lemniscate path shown in Fig. 8

are conducted, where the maximum value of 𝑘1 is 0.0125. Fig. 13 shows

the position tracking performance of the LTI and LPV controllers during

flight tests for the tighter lemniscate path. In addition, the values of

the performance metrics are summarized in Table 6. It is evident that

the LTI controller struggles to execute the aggressive turn, resulting in

rudder saturation which eventually leads to a controller failure. The LPV

controller successfully completes the path without any failure in all the

flight segments. Understandably, the MPE for the LPV controller in this

case is higher than the corresponding values in the cases of the milder

lemniscate and circular paths.

7.3. Discussion

It is apparent from the simulation and flight test results that no

single controller can be adjudged as the best controller. Starting from

the control design process, each controller has its own merits and

limitations. The large number of tunable parameters involved is a

distinct drawback of the RT and PID controllers. For example, in the

case of the RT controller, there are 7 tunable constants that affect the

resulting rate commands, some in non-intuitive ways. The addition of

the ∞ controller only compounds on this issue. The PID controller has

23 tunable parameters as shown in Table 3. By combining the UAS and

path-following dynamics into one lumped system, the amount of tuning

required during the control design process becomes more manageable.

The application of a single ∞ controller allows the control designer to

more easily tune performance by directly relating inputs to the selected

performance cost. However, it is found that the LPV controller is more

sensitive to the problem formulation than the other three controllers.

When the magnitudes of the disturbances are increased, for instance,

the LPV controller must be re-tuned to achieve comparable performance

levels, whereas the other controllers are found to be still adequately

tuned. This is due in part to the fact that the controller design process

is highly dependent on the control designer.

In terms of software implementation on the Gumstix microcontroller,

the LTI and LPV controllers are by far the easiest to implement with

minimum lines of code as they predominantly involve only matrix

multiplications. Both the RT and PID controllers have an outer guidance

loop and an inner stabilization loop, thereby making the controller

code relatively lengthy. Moreover, the presence of inverse trigonometric

88

D. Muniraj et al. Control Engineering Practice 67 (2017) 76–91

Fig. 12. Comparison of the different controllers from flight tests for the moderate lemniscate (2 loops) and circular (3 loops) paths; dist(𝒑(𝑘), 𝑅) is expressed in meters; the arrows
represent the direction of wind; the wind speeds for the lemniscate flight tests are from 2.5 m/s to 3.5 m/s and the wind speeds for the circular flight tests are from 3.0 m/s to 3.5 m/s.

functions in the RT and PID controllers leads to an increase in the

execution time.

The LPV controller has the most consistent position tracking per-

formance and is capable of executing paths with sharp changes in

curvature such as the tighter lemniscate. The improved position tracking

performance achieved by the LPV controller can be attributed in part to

the use of the reference path curvature as a gain scheduling parameter.

This feature, along with the particular choice of the performance output

in the 𝓁2-induced norm control setting, seems to yield an LPV controller

that is capable of attenuating the effects of exogenous disturbances,

such as steady winds, atmospheric turbulence, and sensor noise, on

the position tracking errors much more effectively than the other

controllers. However, the improved performance comes at the expense

of higher control effort. For paths that do not involve sharp changes in

curvature, the LTI controller has the best overall performance in terms

of MPE, 𝑢𝑟, and APT. Although the RT and PID controllers require lower

control effort, their position tracking performance is lower than that of

the LTI and LPV controllers. Another drawback of the PID controller is

that it cannot track paths with a continuous change in curvature such

as the lemniscate.

Thus, the choice of a particular path-following control method

for small fixed-wing UAS depends on such factors as performance

specifications, the type of reference paths to be tracked, and the external

environment in which the UAS is operating. It is believed that this work

will provide some useful guidelines for the control designer to make

such a choice.

Table 6

Path-Following Performance Results from Flight Tests for the Tighter Lemniscate.

Tighter Lemniscate

MPE 𝑢𝑟 APT Wind (m/s)

LTI 7.98 0.295 93.1 < 2.0

LPV 5.16 0.342 87.8 < 2.0

Note: The values for the LTI controller are based on the flight segments where the

controller did not fail.

8. Conclusions and future work

The use of a lumped path-following and UAS system and an ∞
based robust control approach to the path-following problemwas shown

to yield improved performance compared to existing methods in the

literature. While a direct comparison is difficult to make, the ease of

implementation and the better path-following performance of the LTI

and LPV controllers in comparison to the RT and PID controllers make

them potentially valuable in application. Furthermore, the ∞ frame-

work makes it possible to apply various relevant robust control analysis

results to the LTI and LPV controllers. The controllers designed within

were shown to be sufficiently robust to sensor noise, disturbances,

delays, and modeling inaccuracies, with over 200 hours of failure free

simulated flight time, as well as several flight tests under different

wind conditions. Additionally, the LPV controller exhibited good path-

following performance for the tighter lemniscate with 𝑘1max
= 0.0125.

The results presented within are in no way intended to be general,

and are highly dependent on the UAS being considered. They are

even more dependent on the control designer, and other choices of

89

D. Muniraj et al. Control Engineering Practice 67 (2017) 76–91

Fig. 13. Comparison of the LTI and LPV controllers from flight tests with the tighter lemniscate path (3 loops); dist(𝒑(𝑘), 𝑅) is expressed in meters; the wind speeds during the tests are
less than 2.0 m/s.

performance outputs or penalty weights may prove to produce better

results for one or several of the control methods presented within. The

intent of this work is to provide useful guidelines for designing path-

following controllers for a small fixed-wing UAS.

Areas of future theoretical work include extending the combined

path-following and UAS system to 3-dimensional paths, which would

involve the inclusion of the 𝑘2(𝓁) parameter in the path-following

dynamics. Another area of future work is to use an airframe which

is more agile than the Senior Telemaster to test paths with higher

𝑘1max
than the ones considered in this work. Last, the authors plan to

utilize a recently developed Integral Quadratic Constraint (IQC) analysis

tool (Palframan & Farhood, 2016) to guide the control design process for

the LPV controller with the goal of reducing the control effort typically

demanded by such a controller.

Acknowledgments

This work was funded by the Center for Unmanned Aircraft Systems

(C-UAS), a National Science Foundation sponsored industry/university

cooperative research center (I/UCRC) under NSF Grant Nos. IIP-

1539975 and CNS-1650465. The authors would also like to gratefully

acknowledge the assistance from Micah Fry during the flight tests.

References

Abou Jaoude, D., & Farhood, M. (2017), Balanced truncation model reduction of nonsta-

tionary systems interconnected over arbitrary graphs, Submitted for publication to

Automatica.

Aguiar, A. P., Hespanha, J. P., & Kokotović, P. V. (2007). Performance limitations in

reference tracking and path following for nonlinear systems. Automatica, 44(3), 598–

610.

ArduPilot, Ardupilot Autopilot Suite. (2016a). http://ardupilot.org/ardupilot/.

ArduPilot, Ardupilot controller description. (2016b). http://ardupilot.org/plane/docs/

common-tuning.html.

Arifianto, O., & Farhood, M. (2015a). Development and modeling of a low-cost unmanned

aerial vehicle research platform. Journal of Intelligent & Robotic Systems, 80(1), 139–

164.

Arifianto, O., & Farhood, M. (2015b). Optimal control of a small fixed-wing UAV about

concatenated trajectories. Control Engineering Practice, 40, 113–132. http://dx.doi.

org/10.1016/j.conengprac.2015.03.007.

Beck, C. L. (2006). Coprime factors reduction methods for linear parameter varying and

uncertain systems. Systems & Control Letters, 55(3), 199–213.

Beck, C. L., Doyle, J. C., & Glover, K. (1996). Model reduction of multidimensional and

uncertain systems. IEEE Transactions on Automatic Control, 41(10), 1466–1477.

Bishop, R. L. (1975). There is more than one way to frame a curve. The American

Mathematical Monthly , 82(3), 246–251.

Dačić, D. B. (2005). Path-following: An alternative to reference tracking. (pp. 1–118).

University of California, Santa Barbara, Ph.D. thesis.

Doyle, J. C., Lenz, K., & Packard, A. (1986). Design examples using 𝜇-synthesis: Space

shuttle lateral axis FCS during reentry. In Proceedings of the 25th Conference on Decision

and Control (pp. 2218–2223).

Farhood, M. (2012). Nonstationary LPV control for trajectory tracking: A double pendulum

example. International Journal of Control, 85(5), 545–562.

Gage, S. (2003). Creating a unified graphical wind turbulence model from multiple

specifications. In AIAA Modeling and Simulation Technologies Conference and Exhibit .

Gahinet, P., & Apkarian, P. (1994). A linear matrix inequality approach to ∞ control.

International Journal of Robust and Nonlinear Control, 4(4), 421–448.

Gugercin, S., & Antoulas, A. C. (2004). A survey of model reduction by balanced truncation

and some new results. International Journal of Control, 77(8), 748–766.

Gumstix, Gumstix Overo Fire. (2017), https://store.gumstix.com/coms/overo-coms/

overo-firestorm-y-com.html.

Guthrie, K. T. (2013). Linear parameter-varying path following control of a small fixed wing

58 unmanned aerial vehicle (Master’s thesis). Virginia Polytechnic Institute & State

University.

Hanson, A. J., & Ma, H. (1995). Parallel transport approach to curve framing . (pp. 1–20).

Bloomington, IN: Indiana University Department of Computer Science, Technical

Report TR425.

Hepperle, M. Javaprop - design and analysis of propellers. (2006), http://www.mh-

aerotools.de/airfoils/javaprop.htm.

Hobby Express, Senior Telemaster Plus. (2017), http://www.hobbyexpress.com/senior_

telemaster_plus_1034837_prd1.htm.

90

D. Muniraj et al. Control Engineering Practice 67 (2017) 76–91

Kaminer, I., Pascoal, A., Xargay, E., Hovakimyan, N., Cao, C., & Dobrokhodov, V. (2010).

Path following for small unmanned aerial vehicles using L1 adaptive augmentation of

commercial autopilots. Journal of Guidance, Control, and Dynamics, 33(2), 550–564.

Kaminer, I., Yakimenko, O., Dobrokhodov, V., Pascoal, A., Hovakimyan, N., Cao, C.,

Young, A., & Patel, V. (2007). Coordinated path following for time-critical missions

of multiple UAVs via L1 adaptive output feedback. In AIAA Guidance, Navigation, and

Control Conference and Exhibit (pp. 1–34).

Löfberg, J. (2004). YALMIP: A Toolbox for Modeling and Optimization in MATLAB.

In Proceedings of the CACSD Conference.

Moorhouse, D. J., & Woodcock, R. J. (1982). Background information and user guide for

MIL-F-8785C, military specification - flying qualities of piloted airplanes. (pp. 1–244).

Wright-Patterson Air Force Base, Ohio: Air Force Wright Aeronautical Laboratories,

Tech. rep..

Nelson, D. R., Barber, D. B., McLain, T. W., & Beard, R. W. (2006). Vector field path

following for small unmanned air vehicles. In Proceedings of the 2006 American Control

Conference (pp. 5788–5794).

Osborne, J., & Rysdyk, R. T. (2005). Waypoint guidance for small UAVs in wind. In AIAA

Infotech@Aerospace 2005 Conference (pp. 1–12).

Packard, A. (1994). Gain scheduling via linear fractional transformations. Systems &

Control Letters, 22, 79–92.

Palframan, M. C., & Farhood, M. (2016). An IQC analysis framework for small fixed-wing

UAS. In American Control Conference.

Palframan, M. C., Guthrie, K. T., & Farhood, M. (2015). An LPV Path-Following Controller

for Small Fixed-Wing UAS. In Proceedings of the 54th Conference on Decision and Control

(pp. 1–6).

Palframan, M. C., & Woolsey, C. A. (2014). UAS source localization with high latency sen-

sors in turbulent environments. In AIAA Guidance, Navigation, and Control Conference

(pp. 1–15).

Park, S., Deyst, J., & How, J. P. (2004). A new nonlinear guidance logic for trajectory

tracking. In AIAA Guidance, Navigation, and Control Conference and Exhibit (pp. 16–

19). Providence, Rhode Island: AIAA.

Pixhawk, Pixhawk Autopilot hardware. (2017), https://pixhawk.org/modules/pixhawk.

Raol, J. R., & Singh, J. (2009). Flight Mechanics Modeling and Analysis. ISBN: 97814200

67538, Boca Raton: CNC Press.

Rysdyk, R. T. (2006). UAV path following for target observation in wind. Journal of

Guidance, Control, and Dynamics, 29(5), 1092–1100.

Soetanto, D., Lapierre, L., & Pascoal, A. (2003). Adaptive, non-singular path-following

control of dynamic wheeled robots. In Proceedings of the 42nd IEEE Conference on

Decision and Control. ISBN: 0780379241, (pp. 1765–1770).

Sturm, J. F. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over

symmetric cones. Optimization Methods and Software, 11(1–4), 625–663.

Sujit, P., Saripalli, S., & Sousa, J. (2014). Unmanned aerial vehicle path following: A survey

and analysis of algorithms for fixed-wing unmanned aerial vehicless. IEEE Control

Systems, 34(1), 42–59.

Wise, R. A., & Rysdyk, R. T. (2006). UAV coordination for autonomous target tracking.

In Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit

(pp. 1–22).

Yang, J.-M., & Kim, J.-H. (1999). Sliding mode control for trajectory tracking of nonholo-

nomic wheeled mobile robots. IEEE Transactions on Robotics and Automation, 15(3),

578–587.

91

